Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic research in mice finds new role for Interleukin-6

10.01.2003


A Mayo Clinic investigation of Interleukin-6, a hormone inside cells often considered a "bad actor" of the immune system because of its association with inflammation injuries and malignant diseases, shows that it also plays a therapeutic role in mice: it protects brain cells.



Interleukin-6 -- called IL-6 for short by researchers -- may, in fact, be a "white knight" for mouse brain cells, or neurons, as brain cells also are called. These results, while early, may be promising for humans as well. The Mayo Clinic investigation is described in the Jan. 15 Journal of Neuroscience.

Clinical Importance


Every part of the brain is connected by neurons. Yet both the aging process and many diseases are a steady assault on neurons. Says Moses Rodriguez, M.D., principal investigator of the Mayo Clinic study, "One of the biggest challenges we face as a society is the eventual loss and degeneration of neurons from many causes, including many diseases -- from Alzheimer’s disease to multiple sclerosis to Parkinson’s disease -- and other sorts of injury. As our population gets older, this becomes an even bigger issue. So identifying any factor that protects neurons or promotes their survival is an important step toward improving health as we age."

This protective response holds considerable therapeutic significance since scientists already know how to make IL-6 in the laboratory. It may, therefore, be an appealing candidate for researchers to refine into an easily administered drug -- a "brain booster" pill that conserves mental functioning, for example.

If these early results hold up in further studies, IL-6 -- or other similar pharmaceutical compounds -- could potentially serve as a new treatment for a range of conditions that destroy neurons, from Alzheimer’s disease to multiple sclerosis. Says Dr. Rodriguez, "Every disease that is a degenerative disease of the nervous system could potentially be amenable to some kind of treatment with a growth factor like IL-6 because its goal is to keep neurons alive."

The Experiment

To function in a cell, IL-6 has to bind in a specific place -- called a "receptor site" -- in a specific way. Dr. Rodriguez and colleagues were intrigued that IL-6 uses the same receptor site used by compounds whose job is to promote neuronal survival. "To me, that was pretty wild," Dr. Rodriguez says. "So I hypothesized that maybe this IL-6 is also playing a role in protecting neurons."

Testing this idea required extensive genetic work to produce different mouse groups that varied in their ability to produce IL-6. All were infected with a virus that causes a degenerative nerve disease. Animals with the IL-6 gene got mildly sick, but did not die. Mice lacking the IL-6 gene got severely sick and started dying. Why?

To find a cause of death, the Mayo Clinic team analyzed the animals’ tissues. Their findings: neurons in the spinal cords of mice lacking IL-6 were degenerating dramatically. This evidence supported their hypothesis of a neuron-protection role for IL-6. It also led them to their next question: Where is IL-6 made?

An analysis of the brains of healthy mice possessing the IL-6 gene surprised them. "You look for IL-6 in the brain of a normal, healthy animal, and there is no IL-6 in a normal healthy animal!" Dr. Rodriguez says. "So then we infected the animals with the virus. Now when we looked for IL-6, guess what? It was everywhere."

Specifically, IL-6 was found in astrocytes. Astrocytes are the supporting structures on the outside of neurons that help them connect to transmit nerve signals. Says Dr. Rodriguez, "As soon as you put this virus in, all those astrocytes -- like a lightbulb -- go on to make IL-6." Their data show that of infected mice possessing IL-6, only two of 23 (~9 percent) died. By comparison, 17 of 29 mice (~60 percent) lacking IL-6 died after virus infection.

Intriguing Implications … Scientific Basis for Mind-Body Connection in Health

Since its discovery several decades ago, IL-6 has been called a "cytokine." A cytokine is a substance secreted by the immune system. It plays a key role in regulating cells that do the work of the immune system, which is to defend the body from infection and injury.

While IL-6 is unquestionably a cytokine and as such, a proper "citizen" of the immune system, this new Mayo Clinic finding suggests a more complex identity of IL-6. Given its production in astrocytes, it seems IL-6 holds "dual citizenship" by also working in the realm of the brain to protect against neuronal injury. It is this intersection of mind-body systems that Dr. Rodriguez finds most intriguing.

"There is so much that we don’t know about immune-neural interactions that are really important," he says. "For example, I’m a physician and I see a lot of patients. And I know that patients who take care of their bodies are helping their immune systems. I could believe that after we do the right kinds of things for our bodies -- exercise, eat right, rest -- we feel better and we think better because we are activating the right immune systems and because immune factors are acting in our brains. So it doesn’t surprise me that we are now finding that there may be immune factors that are actually very beneficial for neurons. We just didn’t know what they were before."

He notes that this intersection of the immune and neuronal systems of the brain fits with many traditional and ancient healing practices that accept a mind-body connection as a foundation of health. "Maybe there’s a whole scientific basis for it all, and this finding is part of it," Dr. Rodriguez says.

The Next Step

The Mayo Clinic researchers will continue to investigate the receptors for IL-6 in animal models and do other experimental work that could lead to clinical trials in humans. But Dr. Rodriguez cautions that this step is many years away. Much basic science remains to be done.


###
Lisa Copeland
507-284-5005 (days)
507-284-2511(evenings)
email: newsbureau@mayo.edu

Lisa Copeland | EurekAlert!
Further information:
http://www.mayo.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>