Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find first active ’jumping genes’ in rice

09.01.2003

University of Georgia researchers studying rice genomes under a National Science Foundation Plant Genome Research Program award have identified the species’ first active DNA transposons, or "jumping genes."

The research is published in the Jan. 9 edition of the journal Nature.

In collaboration with researchers from Cornell, Washington University and Japan, geneticist Susan Wessler also discovered the first active "miniature inverted-repeat transposable element," or "MITE," of any organism.

Rice (Oryza sativa), an important food crop worldwide, has the smallest genome size of all cereals at 430 million base pairs of DNA. About 40 percent of the rice genome comprises repetitive DNA that does not code for proteins and thus has no obvious function for the plant. Much of this repetitive sequence appears to be transposons similar to MITEs. But like most genomes studied to date, including the human genome, the function of this highly repeated so-called "junk DNA" has been a mystery. The discovery of active transposons in rice provides startling new insights into how genomes change and what role transposons may play in the process.

Active DNA transposons can move new copies of DNA to different places in the genome. To hunt for active DNA transposons, the researchers made use of the publicly available genome sequences for two subspecies of rice, japonica and indica. The researchers reasoned that in plants where such transposons move actively there would be multiple copies of an almost identical sequence. If they could find the conserved sequences in the two rice genomes, then they could test for transposon movement in cell cultures because the number of elements should have increased over time.

Using this approach, the researchers found a repeated sequence of 430 base pairs that was identified as a candidate for an active MITE because of the high degree of sequence conservation among the copies. Recognizing that it shared common size and other characteristics with MITEs, they named it "mPing" for "miniature Ping." They calculated that the entire genome of japonica rice contained about 70 copies of mPing, while indica rice had about 14 copies. When they looked in indica rice cell cultures, the number of mPing elements increased, suggesting that it was indeed actively transposing.

It was puzzling to understand how mPing could transpose, since MITEs do not code for any proteins and are thus unable to move on their own. The researchers reasoned that there must be another "autonomous" transposon that encodes proteins, enabling itself and other related elements to move. To find this autonomous element, the researchers compared the mPing sequence with the japonica and indica rice genome sequences to look for longer, related elements. They found two candidates: a long version called the "Ping" sequence and another shorter sequence they named "Pong." Ping lacked functional coding sequence and was also found only in japonica rice as a single copy. On the other hand, Pong was present in high copy numbers in all varieties, contained appropriate coding sequences, and also increased in number along with mPing during cell culture. This led the researchers to suspect that Pong, not Ping, is the autonomous element that causes mPing to transpose. It is also possible, the researchers speculate, that Ping and Pong may co-activate mPing in some cases.

Wessler and her collaborators have shed new light on the idea that transposons may be instrumental in promoting the diversity of plants during domestication. Their work meshes with an idea, raised almost 20 years ago by Nobel Prize-winning maize geneticist Barbara McClintock, that transposons are part of the dynamic forces shaping plant genomes.

The research findings will help researchers unravel the events leading to the origin, spread, and disappearance of miniature transposons. Remarkably, MITEs make up a large part of the non coding DNA in plant genomes. Through studies of transposons such as MITEs, researchers will begin to understand the impact of so called "junk DNA" on the dynamic structure and function of the genomes of all organisms.

Julie A. Smith | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>