Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find first active ’jumping genes’ in rice

09.01.2003

University of Georgia researchers studying rice genomes under a National Science Foundation Plant Genome Research Program award have identified the species’ first active DNA transposons, or "jumping genes."

The research is published in the Jan. 9 edition of the journal Nature.

In collaboration with researchers from Cornell, Washington University and Japan, geneticist Susan Wessler also discovered the first active "miniature inverted-repeat transposable element," or "MITE," of any organism.

Rice (Oryza sativa), an important food crop worldwide, has the smallest genome size of all cereals at 430 million base pairs of DNA. About 40 percent of the rice genome comprises repetitive DNA that does not code for proteins and thus has no obvious function for the plant. Much of this repetitive sequence appears to be transposons similar to MITEs. But like most genomes studied to date, including the human genome, the function of this highly repeated so-called "junk DNA" has been a mystery. The discovery of active transposons in rice provides startling new insights into how genomes change and what role transposons may play in the process.

Active DNA transposons can move new copies of DNA to different places in the genome. To hunt for active DNA transposons, the researchers made use of the publicly available genome sequences for two subspecies of rice, japonica and indica. The researchers reasoned that in plants where such transposons move actively there would be multiple copies of an almost identical sequence. If they could find the conserved sequences in the two rice genomes, then they could test for transposon movement in cell cultures because the number of elements should have increased over time.

Using this approach, the researchers found a repeated sequence of 430 base pairs that was identified as a candidate for an active MITE because of the high degree of sequence conservation among the copies. Recognizing that it shared common size and other characteristics with MITEs, they named it "mPing" for "miniature Ping." They calculated that the entire genome of japonica rice contained about 70 copies of mPing, while indica rice had about 14 copies. When they looked in indica rice cell cultures, the number of mPing elements increased, suggesting that it was indeed actively transposing.

It was puzzling to understand how mPing could transpose, since MITEs do not code for any proteins and are thus unable to move on their own. The researchers reasoned that there must be another "autonomous" transposon that encodes proteins, enabling itself and other related elements to move. To find this autonomous element, the researchers compared the mPing sequence with the japonica and indica rice genome sequences to look for longer, related elements. They found two candidates: a long version called the "Ping" sequence and another shorter sequence they named "Pong." Ping lacked functional coding sequence and was also found only in japonica rice as a single copy. On the other hand, Pong was present in high copy numbers in all varieties, contained appropriate coding sequences, and also increased in number along with mPing during cell culture. This led the researchers to suspect that Pong, not Ping, is the autonomous element that causes mPing to transpose. It is also possible, the researchers speculate, that Ping and Pong may co-activate mPing in some cases.

Wessler and her collaborators have shed new light on the idea that transposons may be instrumental in promoting the diversity of plants during domestication. Their work meshes with an idea, raised almost 20 years ago by Nobel Prize-winning maize geneticist Barbara McClintock, that transposons are part of the dynamic forces shaping plant genomes.

The research findings will help researchers unravel the events leading to the origin, spread, and disappearance of miniature transposons. Remarkably, MITEs make up a large part of the non coding DNA in plant genomes. Through studies of transposons such as MITEs, researchers will begin to understand the impact of so called "junk DNA" on the dynamic structure and function of the genomes of all organisms.

Julie A. Smith | National Science Foundation
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>