Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sirtuin protein has a new function; May play role in lifespan extension

07.01.2003


Scientists from Johns Hopkins and the University of Wisconsin have discovered that a protein called Sir2, which is found in nearly all living cells, has a new function that might help explain how calorie restriction can increase lifespans for some animals, the scientists say. Their report appeared in the Dec. 20 issue of Science.



A number of laboratories have shown that restricting total calorie intake extends the lifespans of organisms ranging from yeast to laboratory animals. Others have shown that this effect requires Sir2’s protein family, called sirtuins, and increased cellular respiration, which is the process of using oxygen to convert calories into energy.

Studying bacteria, the Johns Hopkins-Wisconsin team has discovered that sirtuin controls the enzyme that converts acetate, a source of calories, into acetyl-CoA, a key component of cellular respiration.


"Sirtuins are highly conserved across species, but this is a never-before-described ability of the protein," says Jef Boeke, Ph.D., professor of molecular biology and genetics at Johns Hopkins’ Institute for Basic Biomedical Sciences. "If sirtuins modify this enzyme in other organisms, turning on production of acetyl-CoA, it could help explain why restricting regular sources of calories -- sugars and fats -- leads to extended lifespan in many kinds of organisms."

Identified in all living creatures, including single-celled organisms like bacteria and yeast, sirtuin proteins previously were known to play an important role in keeping regions of chromosomes turned off. By modifying the histone proteins that keep DNA tightly coiled, sirtuins prevent certain regions of chromosomes from being exposed to cells’ DNA-reading machinery.

Sirtuin’s new role in bacteria involves the same modification as its interaction with histone -- removing an acetyl group, a "decoration" added to a protein’s sequence (like phosphate) -- but the targeted protein is involved in producing energy, not controlling chromosomes.

Normally, cells can survive by using many different molecules as sources of energy -- potent sources like fats or sugars, or even relatively energy-poor molecules like acetate.

However, Jorge Escalante-Semerena and Vincent Starai of the University of Wisconsin created a strain of bacteria missing its sirtuin protein and noticed that it couldn’t live on acetate. Boeke had previously noticed that yeast without sirtuin had the same problem, so the researchers dug deeper.

They discovered that the sirtuin protein in bacteria is a crucial modifier of an enzyme known as acetyl-CoA synthetase, which converts acetate into acetyl-CoA in a two-step process. Acetyl-CoA then can directly fuel the citric acid cycle, the central energy-producing step in cellular respiration.

"This is a completely new target for the sirtuin protein," says Boeke, who has been studying "transcriptional silencing" -- sirtuin’s previously known role -- for some time. "Converting acetate isn’t the cell’s only way of making acetyl-CoA, but when acetate is the major energy source, it’s crucial. Now we have to check for this role in other organisms."

The Wisconsin researchers found that sirtuin activates the first step of acetate’s conversion, and Boeke and Johns Hopkins’ Robert Cole and Ivana Celic figured out that sirtuin does so by removing an acetyl group from a lysine in the enzyme’s active site.

While bacteria and yeast are both single-celled critters, yeast are much more closely related to animals, including humans, than are bacteria. If the yeast version of sirtuin also modifies the newly identified target, that would more likely reflect the protein’s role in animals and would more formally link the protein to lifespan extension, at least for yeast. The effect of calorie restriction on the lifespan of bacteria has not been established.


The studies were funded by the National Institutes of Health, and the Jerome Stefaniak and Pfizer Predoctoral Fellowships (to Starai). The Johns Hopkins Mass Spectrometry facility is funded by the National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery, and the Johns Hopkins Institute for Cell Engineering. Authors on the paper are Starai and Escalante-Semerena of Wisconsin; and Celic, Cole and Boeke of the Johns Hopkins School of Medicine.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>