Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sirtuin protein has a new function; May play role in lifespan extension

07.01.2003


Scientists from Johns Hopkins and the University of Wisconsin have discovered that a protein called Sir2, which is found in nearly all living cells, has a new function that might help explain how calorie restriction can increase lifespans for some animals, the scientists say. Their report appeared in the Dec. 20 issue of Science.



A number of laboratories have shown that restricting total calorie intake extends the lifespans of organisms ranging from yeast to laboratory animals. Others have shown that this effect requires Sir2’s protein family, called sirtuins, and increased cellular respiration, which is the process of using oxygen to convert calories into energy.

Studying bacteria, the Johns Hopkins-Wisconsin team has discovered that sirtuin controls the enzyme that converts acetate, a source of calories, into acetyl-CoA, a key component of cellular respiration.


"Sirtuins are highly conserved across species, but this is a never-before-described ability of the protein," says Jef Boeke, Ph.D., professor of molecular biology and genetics at Johns Hopkins’ Institute for Basic Biomedical Sciences. "If sirtuins modify this enzyme in other organisms, turning on production of acetyl-CoA, it could help explain why restricting regular sources of calories -- sugars and fats -- leads to extended lifespan in many kinds of organisms."

Identified in all living creatures, including single-celled organisms like bacteria and yeast, sirtuin proteins previously were known to play an important role in keeping regions of chromosomes turned off. By modifying the histone proteins that keep DNA tightly coiled, sirtuins prevent certain regions of chromosomes from being exposed to cells’ DNA-reading machinery.

Sirtuin’s new role in bacteria involves the same modification as its interaction with histone -- removing an acetyl group, a "decoration" added to a protein’s sequence (like phosphate) -- but the targeted protein is involved in producing energy, not controlling chromosomes.

Normally, cells can survive by using many different molecules as sources of energy -- potent sources like fats or sugars, or even relatively energy-poor molecules like acetate.

However, Jorge Escalante-Semerena and Vincent Starai of the University of Wisconsin created a strain of bacteria missing its sirtuin protein and noticed that it couldn’t live on acetate. Boeke had previously noticed that yeast without sirtuin had the same problem, so the researchers dug deeper.

They discovered that the sirtuin protein in bacteria is a crucial modifier of an enzyme known as acetyl-CoA synthetase, which converts acetate into acetyl-CoA in a two-step process. Acetyl-CoA then can directly fuel the citric acid cycle, the central energy-producing step in cellular respiration.

"This is a completely new target for the sirtuin protein," says Boeke, who has been studying "transcriptional silencing" -- sirtuin’s previously known role -- for some time. "Converting acetate isn’t the cell’s only way of making acetyl-CoA, but when acetate is the major energy source, it’s crucial. Now we have to check for this role in other organisms."

The Wisconsin researchers found that sirtuin activates the first step of acetate’s conversion, and Boeke and Johns Hopkins’ Robert Cole and Ivana Celic figured out that sirtuin does so by removing an acetyl group from a lysine in the enzyme’s active site.

While bacteria and yeast are both single-celled critters, yeast are much more closely related to animals, including humans, than are bacteria. If the yeast version of sirtuin also modifies the newly identified target, that would more likely reflect the protein’s role in animals and would more formally link the protein to lifespan extension, at least for yeast. The effect of calorie restriction on the lifespan of bacteria has not been established.


The studies were funded by the National Institutes of Health, and the Jerome Stefaniak and Pfizer Predoctoral Fellowships (to Starai). The Johns Hopkins Mass Spectrometry facility is funded by the National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery, and the Johns Hopkins Institute for Cell Engineering. Authors on the paper are Starai and Escalante-Semerena of Wisconsin; and Celic, Cole and Boeke of the Johns Hopkins School of Medicine.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>