Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sirtuin protein has a new function; May play role in lifespan extension

07.01.2003


Scientists from Johns Hopkins and the University of Wisconsin have discovered that a protein called Sir2, which is found in nearly all living cells, has a new function that might help explain how calorie restriction can increase lifespans for some animals, the scientists say. Their report appeared in the Dec. 20 issue of Science.



A number of laboratories have shown that restricting total calorie intake extends the lifespans of organisms ranging from yeast to laboratory animals. Others have shown that this effect requires Sir2’s protein family, called sirtuins, and increased cellular respiration, which is the process of using oxygen to convert calories into energy.

Studying bacteria, the Johns Hopkins-Wisconsin team has discovered that sirtuin controls the enzyme that converts acetate, a source of calories, into acetyl-CoA, a key component of cellular respiration.


"Sirtuins are highly conserved across species, but this is a never-before-described ability of the protein," says Jef Boeke, Ph.D., professor of molecular biology and genetics at Johns Hopkins’ Institute for Basic Biomedical Sciences. "If sirtuins modify this enzyme in other organisms, turning on production of acetyl-CoA, it could help explain why restricting regular sources of calories -- sugars and fats -- leads to extended lifespan in many kinds of organisms."

Identified in all living creatures, including single-celled organisms like bacteria and yeast, sirtuin proteins previously were known to play an important role in keeping regions of chromosomes turned off. By modifying the histone proteins that keep DNA tightly coiled, sirtuins prevent certain regions of chromosomes from being exposed to cells’ DNA-reading machinery.

Sirtuin’s new role in bacteria involves the same modification as its interaction with histone -- removing an acetyl group, a "decoration" added to a protein’s sequence (like phosphate) -- but the targeted protein is involved in producing energy, not controlling chromosomes.

Normally, cells can survive by using many different molecules as sources of energy -- potent sources like fats or sugars, or even relatively energy-poor molecules like acetate.

However, Jorge Escalante-Semerena and Vincent Starai of the University of Wisconsin created a strain of bacteria missing its sirtuin protein and noticed that it couldn’t live on acetate. Boeke had previously noticed that yeast without sirtuin had the same problem, so the researchers dug deeper.

They discovered that the sirtuin protein in bacteria is a crucial modifier of an enzyme known as acetyl-CoA synthetase, which converts acetate into acetyl-CoA in a two-step process. Acetyl-CoA then can directly fuel the citric acid cycle, the central energy-producing step in cellular respiration.

"This is a completely new target for the sirtuin protein," says Boeke, who has been studying "transcriptional silencing" -- sirtuin’s previously known role -- for some time. "Converting acetate isn’t the cell’s only way of making acetyl-CoA, but when acetate is the major energy source, it’s crucial. Now we have to check for this role in other organisms."

The Wisconsin researchers found that sirtuin activates the first step of acetate’s conversion, and Boeke and Johns Hopkins’ Robert Cole and Ivana Celic figured out that sirtuin does so by removing an acetyl group from a lysine in the enzyme’s active site.

While bacteria and yeast are both single-celled critters, yeast are much more closely related to animals, including humans, than are bacteria. If the yeast version of sirtuin also modifies the newly identified target, that would more likely reflect the protein’s role in animals and would more formally link the protein to lifespan extension, at least for yeast. The effect of calorie restriction on the lifespan of bacteria has not been established.


The studies were funded by the National Institutes of Health, and the Jerome Stefaniak and Pfizer Predoctoral Fellowships (to Starai). The Johns Hopkins Mass Spectrometry facility is funded by the National Center for Research Resources, the Johns Hopkins Fund for Medical Discovery, and the Johns Hopkins Institute for Cell Engineering. Authors on the paper are Starai and Escalante-Semerena of Wisconsin; and Celic, Cole and Boeke of the Johns Hopkins School of Medicine.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>