Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds life 1000 feet beneath ocean floor

03.01.2003


A new study has discovered an abundance of microbial life deep beneath the ocean floor in ancient basalt that forms part of the Earth’s crust, in research that once more expands the realm of seemingly hostile or remote environments in which living organisms can apparently thrive.



The research was done off the coast of Oregon near a sea-floor spreading center on the Juan de Fuca Ridge, by scientists from Oregon State University and several other institutions. It will be published Friday in the journal Science.

In 3.5 million-year-old crust almost 1,000 feet beneath the bottom of the ocean, researchers found moderately hot water moving through the heavily-fractured basalt. The water was depleted in sulfate and greatly enriched with ammonium, suggesting biological activity in a high-pressure, undersea location far from the types of carbon or energy sources upon which most life on Earth is based. It was one of the most precise biological samplings ever taken from deep under the ocean floor, scientists say.


"This is one of the best views we’ve ever had of this difficult-to-reach location in the Earth’s crust and the life forms that live in it," said Michael Rappe, a research associate at OSU. "Until now we knew practically nothing about the biology of areas such as this, but we found about the same amount of bacteria in that water as you might find in surrounding seawater in the ocean. It was abundant."

According to Steve Giovannoni, an OSU professor of microbiology and one of the co-authors of the publication, the work represented a highly complicated "plumbing job," among other things. It took advantage of an existing hole and pipe casing that had been drilled previously in that area by the Ocean Drilling Program, through about 825 feet of sedimentary deposits on the ocean floor and another 175 feet of basalt, or hardened lava about 3.5 million years old.

Using the existing casing, scientists were able to fit an experimental seal and deliver to the seafloor, for testing and characterization, the crustal fluids from far below.

"People have wondered for a long time what types of organisms might live within Earth’s crust," Giovannoni said. "This has given us one of the best looks we’ve ever had at that environment."

The researchers found organisms growing without the need to consume organic molecules, as does most life on Earth. Instead, they processed carbon dioxide and inorganic molecules such as sulfide or hydrogen. DNA analysis of these microbes suggested they are closely related to known sulfate and nitrate "reducers" that are common in other environments. The level of biological activity was sufficiently high that ammonia levels in the subsurface samples were 142 times higher than those in nearby seawater.

"As more research such as this is done, we’ll probably continue to be surprised at just how far down we can find life within the Earth, and the many different environments under which it’s able to exist," Rappe said.

The deep ocean crust, the researchers said, is an immense biosphere in its own right that covers most of the Earth.



By David Stauth, 541-737-0787
SOURCES: Steven Giovannoni, 541-737-1835; Michael Rappe, 541-737-0717

Stephen Giovannoni | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>