Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds life 1000 feet beneath ocean floor

03.01.2003


A new study has discovered an abundance of microbial life deep beneath the ocean floor in ancient basalt that forms part of the Earth’s crust, in research that once more expands the realm of seemingly hostile or remote environments in which living organisms can apparently thrive.



The research was done off the coast of Oregon near a sea-floor spreading center on the Juan de Fuca Ridge, by scientists from Oregon State University and several other institutions. It will be published Friday in the journal Science.

In 3.5 million-year-old crust almost 1,000 feet beneath the bottom of the ocean, researchers found moderately hot water moving through the heavily-fractured basalt. The water was depleted in sulfate and greatly enriched with ammonium, suggesting biological activity in a high-pressure, undersea location far from the types of carbon or energy sources upon which most life on Earth is based. It was one of the most precise biological samplings ever taken from deep under the ocean floor, scientists say.


"This is one of the best views we’ve ever had of this difficult-to-reach location in the Earth’s crust and the life forms that live in it," said Michael Rappe, a research associate at OSU. "Until now we knew practically nothing about the biology of areas such as this, but we found about the same amount of bacteria in that water as you might find in surrounding seawater in the ocean. It was abundant."

According to Steve Giovannoni, an OSU professor of microbiology and one of the co-authors of the publication, the work represented a highly complicated "plumbing job," among other things. It took advantage of an existing hole and pipe casing that had been drilled previously in that area by the Ocean Drilling Program, through about 825 feet of sedimentary deposits on the ocean floor and another 175 feet of basalt, or hardened lava about 3.5 million years old.

Using the existing casing, scientists were able to fit an experimental seal and deliver to the seafloor, for testing and characterization, the crustal fluids from far below.

"People have wondered for a long time what types of organisms might live within Earth’s crust," Giovannoni said. "This has given us one of the best looks we’ve ever had at that environment."

The researchers found organisms growing without the need to consume organic molecules, as does most life on Earth. Instead, they processed carbon dioxide and inorganic molecules such as sulfide or hydrogen. DNA analysis of these microbes suggested they are closely related to known sulfate and nitrate "reducers" that are common in other environments. The level of biological activity was sufficiently high that ammonia levels in the subsurface samples were 142 times higher than those in nearby seawater.

"As more research such as this is done, we’ll probably continue to be surprised at just how far down we can find life within the Earth, and the many different environments under which it’s able to exist," Rappe said.

The deep ocean crust, the researchers said, is an immense biosphere in its own right that covers most of the Earth.



By David Stauth, 541-737-0787
SOURCES: Steven Giovannoni, 541-737-1835; Michael Rappe, 541-737-0717

Stephen Giovannoni | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>