Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research finds life 1000 feet beneath ocean floor

03.01.2003


A new study has discovered an abundance of microbial life deep beneath the ocean floor in ancient basalt that forms part of the Earth’s crust, in research that once more expands the realm of seemingly hostile or remote environments in which living organisms can apparently thrive.



The research was done off the coast of Oregon near a sea-floor spreading center on the Juan de Fuca Ridge, by scientists from Oregon State University and several other institutions. It will be published Friday in the journal Science.

In 3.5 million-year-old crust almost 1,000 feet beneath the bottom of the ocean, researchers found moderately hot water moving through the heavily-fractured basalt. The water was depleted in sulfate and greatly enriched with ammonium, suggesting biological activity in a high-pressure, undersea location far from the types of carbon or energy sources upon which most life on Earth is based. It was one of the most precise biological samplings ever taken from deep under the ocean floor, scientists say.


"This is one of the best views we’ve ever had of this difficult-to-reach location in the Earth’s crust and the life forms that live in it," said Michael Rappe, a research associate at OSU. "Until now we knew practically nothing about the biology of areas such as this, but we found about the same amount of bacteria in that water as you might find in surrounding seawater in the ocean. It was abundant."

According to Steve Giovannoni, an OSU professor of microbiology and one of the co-authors of the publication, the work represented a highly complicated "plumbing job," among other things. It took advantage of an existing hole and pipe casing that had been drilled previously in that area by the Ocean Drilling Program, through about 825 feet of sedimentary deposits on the ocean floor and another 175 feet of basalt, or hardened lava about 3.5 million years old.

Using the existing casing, scientists were able to fit an experimental seal and deliver to the seafloor, for testing and characterization, the crustal fluids from far below.

"People have wondered for a long time what types of organisms might live within Earth’s crust," Giovannoni said. "This has given us one of the best looks we’ve ever had at that environment."

The researchers found organisms growing without the need to consume organic molecules, as does most life on Earth. Instead, they processed carbon dioxide and inorganic molecules such as sulfide or hydrogen. DNA analysis of these microbes suggested they are closely related to known sulfate and nitrate "reducers" that are common in other environments. The level of biological activity was sufficiently high that ammonia levels in the subsurface samples were 142 times higher than those in nearby seawater.

"As more research such as this is done, we’ll probably continue to be surprised at just how far down we can find life within the Earth, and the many different environments under which it’s able to exist," Rappe said.

The deep ocean crust, the researchers said, is an immense biosphere in its own right that covers most of the Earth.



By David Stauth, 541-737-0787
SOURCES: Steven Giovannoni, 541-737-1835; Michael Rappe, 541-737-0717

Stephen Giovannoni | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>