Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking the Sox off early mammalian development

31.12.2002


Scientists find key embryonic stem cell gene



Scientists have identified a gene that is required during early mammalian embryogenesis to maintain cellular pluripotency – the ability of an embryonic cell to develop into virtually any cell type of the adult animal. This discovery by Dr. Robin Lovell-Badge and colleagues at the MRC National Institute for Medical Research (London, UK) that the Sox2 gene is necessary to sustain the developmental plasticity of embryonic cells sheds new light on the molecular cues that direct early embryogenesis, as well as the genetic requirements for embryonic stem cell maintenance. The report is published in the January 1 issue of Genes & Development.

"Stem cells must have specific genes that give them their characteristic properties. Our work describes one such gene, Sox2, that appears essential for multipotent stem cell types in the early embryo," explains Dr. Lovell-Badge.


Early in mammalian development, a pre-implantation stage embryo called a blastocyst forms. The cells of the blastocyst are at a developmental fork in the road: The cells on the surface of the blastocyst become trophoblast cells, while the cells on the inside of the blastocyst become the inner cell mass (ICM). The ICM is further specified into epiblast and hypoblast cells, which, together with trophoblast cells, give rise to the entire embryo and its associated tissues: epiblast cells differentiate into all the cell types of the embryo, hypoblast cells differentiate into the yolk sac, and trophoblast cells differentiate into the chorion and much of the placenta, including a range of specialized cell types.

Dr. Lovell-Badge and colleagues have identified Sox2 as one of the only two known transcription factors (master gene regulators) to be involved in the specification of these three embryonic cell lineages.

"We have been working with this gene for a while, using it, for example, to study stem cells of the nervous system, and simply set out to ask what its critical role is during embryonic development. It turned out to be important very early on - well before the nervous system forms - in two separate cell types: those that give rise to all cells types of the embryo and those that give rise to much of the placenta," states Dr. Lovell-Badge.

To investigate the developmental role of Sox2, the researchers generated transgenic mice deficient in the gene, or what scientists call "Sox2 knockout mice." Sox2 knockout mice die as embyos shortly after implantation in the uterus. Dr. Lovell-Badge and colleagues noted that while maternally derived SOX2 protein is present in newly formed embryos, by embryonic day 6.5 the maternal levels of SOX2 dissipate and fatal defects arise in Sox2-deficient embryos.

The researchers found that in Sox2-deficient embryos, the epiblast lineage fails, and only a portion of trophoblast- and hypoblast-derived cells survive. Further work in cell culture confirmed this result in vitro, and also demonstrated that embryonic stem cells cannot be derived from Sox2-deficient embryos. Thus, Sox2 is required to maintain cellular pluripotency both in the developing embryo and in embryonic stem cells.

With this discovery, Sox2 now joins Oct4 as the only identified transcription factors crucial to maintaining embryonic pluripotency. Dr. Lovell-Badge and colleagues show that Sox2 is actually expressed in a broader range than Oct4 in the embryo: While the expression of both genes is required in the ICM and epiblast, only Sox2 is also required to sustain multipotential cells derived from the trophoblast lineage.

Although further research is needed to delineate the precise molecular pathway of Sox2 action, Dr. Lovell-Badge feels confident that Sox2 "helps to define an embryonic stem cell (ES cell) – [and] it will therefore allow us to better understand these cells and perhaps to manipulate them in ways that will be important for stem cell based therapies."

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>