Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In mutually beneficial relationship, slowest-evolving species gains upper hand

30.12.2002


When members of two species compete directly with each other, scientists believe the one that rolls with the evolutionary punches and adapts most quickly has the upper hand. But new evidence suggests that in relationships that benefit both species, the one that evolves more slowly has the advantage.



"The idea that has been dominant for the last couple of decades is that when two species co-evolve, they try to outrun each other," said Carl Bergstrom, a University of Washington assistant zoology professor. But that doesn’t necessarily hold true for individuals of different species engaged in a mutualistic, or symbiotic, relationship. In such cases, he said, the one that evolves more slowly is likely to gain a disproportionate share of benefits from the relationship.

A predator, for example, typically must evolve rapidly so that it doesn’t fall behind the evolutionary advances of its prey and thus miss lunch. That has been termed the "Red Queen effect" after the character in Lewis Carroll’s "Through the Looking Glass," who said, "It takes all the running you can do to keep in the same place."


Bergstrom and Michael Lachmann, a postdoctoral researcher at Germany’s Max Planck Institute for Mathematics in the Sciences, have given the name "Red King effect" to mutualistic relationships in which greater benefits go to the slower-evolving species. Their findings are being published this week in the Proceedings of the National Academy of Sciences.

The effect is particularly pronounced if, in the course of "bargaining," one side has little room to negotiate and so the other side is forced to give up more if the two are to continue their relationship, according to the researchers, who have been collaborating for nearly a decade.

For instance, one might imagine the Red King and Red Queen on opposite sides of a chessboard, with the slow-and-patient king and the fast-but-impatient queen negotiating where to meet. Each wants the other to travel farther, but the king explains that he is at a disadvantage because he can only move one square at a time. Since the queen can move as many spaces as she wants, she relents and meets her husband on his side of the board.

Bergstrom and Lachmann worked with a mathematical model devised from evolutionary game theory, which studies games in which the overall fitness of the players depends on the success each has in playing the game. The model, closely related to models used in the study of economics, can be applied to well-understood relationships between species.

In the case of ants and lycaenids, the largest butterfly family, with many different species, the ants draw considerable benefits by protecting lycaenid caterpillars from parasites that pose a great mortality threat. In return, the caterpillars spend much of their energy producing sugar- and protein-rich excretions as a food source for their ant protectors. The dilemma is how much food should the caterpillars provide and how much should the ants demand. The answer changes over time, depending on how quickly the species evolve. At times the caterpillars might offer less food and at least some of the ants might look for new food sources.

"What the rate of evolution does is tell how long one population can go on taking what’s offered," Bergstrom said. "Every time some ants evolve and go off to look for something better, it encourages the caterpillars to offer more. But if the ants don’t leave in search of a better deal, eventually they will evolve to accept less.

"Species that evolve fast give in more to pressure than species that evolve slowly."

Bergstrom said the Red King finding is something of an anomaly that will add to the body of knowledge in evolutionary biology.

"I don’t think natural selection is going to select for species that evolve slowly. It would be interesting and counterintuitive if that happened, but I don’t expect that to happen," he said.

"Our work just points out one particular building block in evolutionary theory, but it will take a lot more refinement and examination before we know how important this phenomenon is in determining the form and pattern of mutualisms."


For more information, contact Bergstrom at (206) 685-3487 or cbergst@u.washington.edu or Lachmann at (011) 49-341-995-9854 or dirk@santafe.edu

Vince Stricherz | EurekAlert!

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>