Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In mutually beneficial relationship, slowest-evolving species gains upper hand

30.12.2002


When members of two species compete directly with each other, scientists believe the one that rolls with the evolutionary punches and adapts most quickly has the upper hand. But new evidence suggests that in relationships that benefit both species, the one that evolves more slowly has the advantage.



"The idea that has been dominant for the last couple of decades is that when two species co-evolve, they try to outrun each other," said Carl Bergstrom, a University of Washington assistant zoology professor. But that doesn’t necessarily hold true for individuals of different species engaged in a mutualistic, or symbiotic, relationship. In such cases, he said, the one that evolves more slowly is likely to gain a disproportionate share of benefits from the relationship.

A predator, for example, typically must evolve rapidly so that it doesn’t fall behind the evolutionary advances of its prey and thus miss lunch. That has been termed the "Red Queen effect" after the character in Lewis Carroll’s "Through the Looking Glass," who said, "It takes all the running you can do to keep in the same place."


Bergstrom and Michael Lachmann, a postdoctoral researcher at Germany’s Max Planck Institute for Mathematics in the Sciences, have given the name "Red King effect" to mutualistic relationships in which greater benefits go to the slower-evolving species. Their findings are being published this week in the Proceedings of the National Academy of Sciences.

The effect is particularly pronounced if, in the course of "bargaining," one side has little room to negotiate and so the other side is forced to give up more if the two are to continue their relationship, according to the researchers, who have been collaborating for nearly a decade.

For instance, one might imagine the Red King and Red Queen on opposite sides of a chessboard, with the slow-and-patient king and the fast-but-impatient queen negotiating where to meet. Each wants the other to travel farther, but the king explains that he is at a disadvantage because he can only move one square at a time. Since the queen can move as many spaces as she wants, she relents and meets her husband on his side of the board.

Bergstrom and Lachmann worked with a mathematical model devised from evolutionary game theory, which studies games in which the overall fitness of the players depends on the success each has in playing the game. The model, closely related to models used in the study of economics, can be applied to well-understood relationships between species.

In the case of ants and lycaenids, the largest butterfly family, with many different species, the ants draw considerable benefits by protecting lycaenid caterpillars from parasites that pose a great mortality threat. In return, the caterpillars spend much of their energy producing sugar- and protein-rich excretions as a food source for their ant protectors. The dilemma is how much food should the caterpillars provide and how much should the ants demand. The answer changes over time, depending on how quickly the species evolve. At times the caterpillars might offer less food and at least some of the ants might look for new food sources.

"What the rate of evolution does is tell how long one population can go on taking what’s offered," Bergstrom said. "Every time some ants evolve and go off to look for something better, it encourages the caterpillars to offer more. But if the ants don’t leave in search of a better deal, eventually they will evolve to accept less.

"Species that evolve fast give in more to pressure than species that evolve slowly."

Bergstrom said the Red King finding is something of an anomaly that will add to the body of knowledge in evolutionary biology.

"I don’t think natural selection is going to select for species that evolve slowly. It would be interesting and counterintuitive if that happened, but I don’t expect that to happen," he said.

"Our work just points out one particular building block in evolutionary theory, but it will take a lot more refinement and examination before we know how important this phenomenon is in determining the form and pattern of mutualisms."


For more information, contact Bergstrom at (206) 685-3487 or cbergst@u.washington.edu or Lachmann at (011) 49-341-995-9854 or dirk@santafe.edu

Vince Stricherz | EurekAlert!

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>