Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell chemist explains how acrylamide, a possible carcinogen, might be formed when starch-rich foods are fried or baked

20.12.2002


Last April Swedish scientists discovered high levels of a potentially cancer-causing chemical called acrylamide in wide range of starch-containing foods that are fried or baked, particularly french fries, potato chips and crackers. The announcement received worldwide publicity. But at the time, no one knew where the acrylamide came from, how it was formed, or, indeed, if there is a link between acrylamide in food and cancer. The findings were quickly confirmed by the British Food Standards Agency. Earlier this autumn the source of the acrylamide was identified independently by researchers at the University of Reading in England, Nestlé in Switzerland and Procter & Gamble in the United States. They showed that acrylamide is produced when asparagine, an amino acid abundant in cereals and grains, is heated above 100 degrees Centigrade (212 degrees Fahrenheit) with either of two sugars, glucose or 2-deoxyglucose.



Now Bruce Ganem, a professor in Cornell University’s Department of Chemistry and Chemical Biology, has offered a more-detailed chemical explanation about how acrylamide is produced when starch-containing foods are fried or cooked at high temperatures. His theory is proposed in a letter, "Explaining acrylamides in food," in a recent issue of the journal Chemical and Engineering News (Dec. 2, 2002).

Acrylamide is a polymer that is widely used in the treatment of drinking water. It also is used in the manufacture of plastics. It was first evaluated as probably carcinogenic to humans in 1994 by the International Agency for Research on Cancer. But it was not known to occur in high levels in fried or baked foods before this year’s Swedish study.


"The organic chemistry of what happens is not very well understood," Ganem says. "Everyone agrees that a molecule of carbon dioxide must be lost in order to form acrylamide, but it was unclear how that might happen." The British and Swiss research teams invoked the Maillard reaction to explain the formation of acrylamide, but they did not propose any chemical details. The Maillard reaction, also known as non-enzymatic browning, was first observed in 1912 by Louis Camille Maillard. It involves the reactions between proteins and carbohydrates that cause food to turn brown when cooked. The reactions result in the formation of many products, most of which have some impact on the flavor and appearance of cooked food.

Procter & Gamble scientists noticed that acrylamide also was formed from a combination of the amino acid asparagine and the sugar 2-deoxyglucose. "This is interesting because 2-deoxyglucose lacks a key molecular feature needed for the Maillard reaction," says Ganem.

"That’s where my letter to Chemical & Engineering News comes in. By focusing on explaining how carbon dioxide might be released, I recognized another plausible reaction pathway -- not involving the Maillard reaction -- that could account for the formation of acrylamide. My idea was based on how some biological systems achieve decarboxylation, which means the loss of carbon dioxide. That connection provided a big clue that led to the step-by-step chemical mechanism I present in my letter."

Instead of undergoing the Maillard reaction, fried or baked foods, Ganem suggests, undergo an alternative chemical pathway that results in the loss of carbon dioxide through natural metabolic processes, known as enzymatic decarboxylation.

"The asparagine is the actual source of acrylamide," Ganem says. "The pathway I presented probably would not occur under normal biological conditions, but it’s important to recognize that we’re talking about temperatures well above 100 degrees Centigrade while the food is being cooked."

Blaine P. Friedlander Jr. | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec02/Acrylamide.Ganem.bpf.html

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>