Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell chemist explains how acrylamide, a possible carcinogen, might be formed when starch-rich foods are fried or baked

20.12.2002


Last April Swedish scientists discovered high levels of a potentially cancer-causing chemical called acrylamide in wide range of starch-containing foods that are fried or baked, particularly french fries, potato chips and crackers. The announcement received worldwide publicity. But at the time, no one knew where the acrylamide came from, how it was formed, or, indeed, if there is a link between acrylamide in food and cancer. The findings were quickly confirmed by the British Food Standards Agency. Earlier this autumn the source of the acrylamide was identified independently by researchers at the University of Reading in England, Nestlé in Switzerland and Procter & Gamble in the United States. They showed that acrylamide is produced when asparagine, an amino acid abundant in cereals and grains, is heated above 100 degrees Centigrade (212 degrees Fahrenheit) with either of two sugars, glucose or 2-deoxyglucose.



Now Bruce Ganem, a professor in Cornell University’s Department of Chemistry and Chemical Biology, has offered a more-detailed chemical explanation about how acrylamide is produced when starch-containing foods are fried or cooked at high temperatures. His theory is proposed in a letter, "Explaining acrylamides in food," in a recent issue of the journal Chemical and Engineering News (Dec. 2, 2002).

Acrylamide is a polymer that is widely used in the treatment of drinking water. It also is used in the manufacture of plastics. It was first evaluated as probably carcinogenic to humans in 1994 by the International Agency for Research on Cancer. But it was not known to occur in high levels in fried or baked foods before this year’s Swedish study.


"The organic chemistry of what happens is not very well understood," Ganem says. "Everyone agrees that a molecule of carbon dioxide must be lost in order to form acrylamide, but it was unclear how that might happen." The British and Swiss research teams invoked the Maillard reaction to explain the formation of acrylamide, but they did not propose any chemical details. The Maillard reaction, also known as non-enzymatic browning, was first observed in 1912 by Louis Camille Maillard. It involves the reactions between proteins and carbohydrates that cause food to turn brown when cooked. The reactions result in the formation of many products, most of which have some impact on the flavor and appearance of cooked food.

Procter & Gamble scientists noticed that acrylamide also was formed from a combination of the amino acid asparagine and the sugar 2-deoxyglucose. "This is interesting because 2-deoxyglucose lacks a key molecular feature needed for the Maillard reaction," says Ganem.

"That’s where my letter to Chemical & Engineering News comes in. By focusing on explaining how carbon dioxide might be released, I recognized another plausible reaction pathway -- not involving the Maillard reaction -- that could account for the formation of acrylamide. My idea was based on how some biological systems achieve decarboxylation, which means the loss of carbon dioxide. That connection provided a big clue that led to the step-by-step chemical mechanism I present in my letter."

Instead of undergoing the Maillard reaction, fried or baked foods, Ganem suggests, undergo an alternative chemical pathway that results in the loss of carbon dioxide through natural metabolic processes, known as enzymatic decarboxylation.

"The asparagine is the actual source of acrylamide," Ganem says. "The pathway I presented probably would not occur under normal biological conditions, but it’s important to recognize that we’re talking about temperatures well above 100 degrees Centigrade while the food is being cooked."

Blaine P. Friedlander Jr. | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec02/Acrylamide.Ganem.bpf.html

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>