Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL expands blood serum protein library

19.12.2002


In a significant scientific advance, researchers at the Department of Energy’s Pacific Northwest National Laboratory have identified or confirmed 490 proteins in human blood serum — nearly doubling the number of known serum proteins, according to a paper accepted for publication in the December issue of Molecular and Cellular Proteomics.


Using liquid chromatography and mass spectrometry instrumentation, Pacific Northwest National Laboratory scientists identified and characterized nearly twice as many proteins in blood serum than previously noted, which provides a greater library of proteins to study for potential use in disease diagnosis.



“We have performed the most extensive identification of proteins in serum to date,” said Joel Pounds, corresponding author and a PNNL staff scientist. “We studied blood serum because it holds clues to all the major processes in our bodies. We need to know what proteins exist in that serum to know how they might be used to predict disease susceptibility, monitor disease progression or diagnose disease.”

These clues include proteins that “leak” from dead and dying cells, and proteins secreted into blood or released from tumors. Identifying these proteins allows scientists to conduct additional studies to define each protein’s functional role in cells and the body.


The scientific community has studied plasma, the parent component to serum, for more than a hundred years. Recent studies have primarily utilized a technique called two-dimensional gel electrophoresis to study proteins found in plasma, yet this method is limited in its ability to identify proteins that exist in small amounts, known as low-abundance proteins, and is labor intensive. The identification of low-abundance proteins is important as many of these proteins often function as “messengers” that inform cells to turn signaling pathways on or off — such functions are central to cell death or disease development.

“After a long period of slow progress, research on the plasma proteome has begun a period of explosive growth attributable to new multidimensional fractionation methods,” said N. Leigh Anderson, founder and chief executive officer of The Plasma Proteome Institute (www.plasmaproteome.org). “PNNL’s work is an important early demonstration of the power of these methods, and suggests that hundreds, if not thousands, of new candidate markers will be found.”

Studying the proteome of blood serum was a natural fit for scientists at PNNL, which has a strong proteomics capability. A proteome is the collection of proteins expressed by a cell under a specific set of conditions at a certain time. Through its Biomolecular Systems Initiative, the laboratory is supporting multidisciplinary research in systems biology. Scientists have developed unique technologies that allow for more thorough analysis of proteins and have studied the proteome of ovarian cancer as well as other disease states.

Pounds and his team, which included lead author and post-doctoral researcher Joshua Adkins, used chromatography and mass spectrometry instead of the more traditional 2-D gel electrophoresis to identify proteins, including low-abundance proteins not previously identified in serum and proteins with an unknown function. Their overall analysis was conducted on a single human blood serum sample from a healthy anonymous female donor.

The majority of serum protein consists of a few, very abundant proteins. One of the current challenges in the field is that the presence of abundant proteins obscures the measurement of many low-abundance proteins, and that removal of these abundant proteins may result in the simultaneous removal of low-abundance proteins. Here, Pounds and his team kept those abundant proteins, but simplified the mass spectrometry by fractionating the peptides according to charge state.

Once fractionated to allow for the analysis of lower abundance proteins, the samples were analyzed using a mass spectrometer that had been programmed to concentrate on specific ranges of peptide size during several analyses, thereby providing a more complete analysis of the proteome. The researchers employed powerful mass spectrometers housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national user facility located at PNNL.

The sample preparation and analysis approach allowed PNNL scientists to expand the range of proteins that could be identified. For example, prostate-specific antigen (PSA) was identified in the sample using this approach. The reference value for PSA is in extremely low abundance in women, along the order of less than 1 picogram per milliliter. Detecting its presence provided a control to learn how well PNNL’s approach identified low-abundance proteins.

“With this study, we have taken a large step toward defining the protein composition of serum,” Pounds said. “But many more steps and technological improvements are needed to move beyond these 490 proteins to the thousands of proteins that may be present in blood serum.”

Molecular and Cellular Proteomics is a new journal distributed by the American Society for Biochemistry and Molecular Biology. Pounds’ paper is available online at http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf. A recent paper authored by Anderson and appearing in this journal also is available online at http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov. PNNL’s Biomolecular Systems Initiative is online at http://www.biomolecular.org.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!
Further information:
http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf
http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf
http://www.biomolecular.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>