Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL expands blood serum protein library

19.12.2002


In a significant scientific advance, researchers at the Department of Energy’s Pacific Northwest National Laboratory have identified or confirmed 490 proteins in human blood serum — nearly doubling the number of known serum proteins, according to a paper accepted for publication in the December issue of Molecular and Cellular Proteomics.


Using liquid chromatography and mass spectrometry instrumentation, Pacific Northwest National Laboratory scientists identified and characterized nearly twice as many proteins in blood serum than previously noted, which provides a greater library of proteins to study for potential use in disease diagnosis.



“We have performed the most extensive identification of proteins in serum to date,” said Joel Pounds, corresponding author and a PNNL staff scientist. “We studied blood serum because it holds clues to all the major processes in our bodies. We need to know what proteins exist in that serum to know how they might be used to predict disease susceptibility, monitor disease progression or diagnose disease.”

These clues include proteins that “leak” from dead and dying cells, and proteins secreted into blood or released from tumors. Identifying these proteins allows scientists to conduct additional studies to define each protein’s functional role in cells and the body.


The scientific community has studied plasma, the parent component to serum, for more than a hundred years. Recent studies have primarily utilized a technique called two-dimensional gel electrophoresis to study proteins found in plasma, yet this method is limited in its ability to identify proteins that exist in small amounts, known as low-abundance proteins, and is labor intensive. The identification of low-abundance proteins is important as many of these proteins often function as “messengers” that inform cells to turn signaling pathways on or off — such functions are central to cell death or disease development.

“After a long period of slow progress, research on the plasma proteome has begun a period of explosive growth attributable to new multidimensional fractionation methods,” said N. Leigh Anderson, founder and chief executive officer of The Plasma Proteome Institute (www.plasmaproteome.org). “PNNL’s work is an important early demonstration of the power of these methods, and suggests that hundreds, if not thousands, of new candidate markers will be found.”

Studying the proteome of blood serum was a natural fit for scientists at PNNL, which has a strong proteomics capability. A proteome is the collection of proteins expressed by a cell under a specific set of conditions at a certain time. Through its Biomolecular Systems Initiative, the laboratory is supporting multidisciplinary research in systems biology. Scientists have developed unique technologies that allow for more thorough analysis of proteins and have studied the proteome of ovarian cancer as well as other disease states.

Pounds and his team, which included lead author and post-doctoral researcher Joshua Adkins, used chromatography and mass spectrometry instead of the more traditional 2-D gel electrophoresis to identify proteins, including low-abundance proteins not previously identified in serum and proteins with an unknown function. Their overall analysis was conducted on a single human blood serum sample from a healthy anonymous female donor.

The majority of serum protein consists of a few, very abundant proteins. One of the current challenges in the field is that the presence of abundant proteins obscures the measurement of many low-abundance proteins, and that removal of these abundant proteins may result in the simultaneous removal of low-abundance proteins. Here, Pounds and his team kept those abundant proteins, but simplified the mass spectrometry by fractionating the peptides according to charge state.

Once fractionated to allow for the analysis of lower abundance proteins, the samples were analyzed using a mass spectrometer that had been programmed to concentrate on specific ranges of peptide size during several analyses, thereby providing a more complete analysis of the proteome. The researchers employed powerful mass spectrometers housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national user facility located at PNNL.

The sample preparation and analysis approach allowed PNNL scientists to expand the range of proteins that could be identified. For example, prostate-specific antigen (PSA) was identified in the sample using this approach. The reference value for PSA is in extremely low abundance in women, along the order of less than 1 picogram per milliliter. Detecting its presence provided a control to learn how well PNNL’s approach identified low-abundance proteins.

“With this study, we have taken a large step toward defining the protein composition of serum,” Pounds said. “But many more steps and technological improvements are needed to move beyond these 490 proteins to the thousands of proteins that may be present in blood serum.”

Molecular and Cellular Proteomics is a new journal distributed by the American Society for Biochemistry and Molecular Biology. Pounds’ paper is available online at http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf. A recent paper authored by Anderson and appearing in this journal also is available online at http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov. PNNL’s Biomolecular Systems Initiative is online at http://www.biomolecular.org.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!
Further information:
http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf
http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf
http://www.biomolecular.org

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>