Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL expands blood serum protein library

19.12.2002


In a significant scientific advance, researchers at the Department of Energy’s Pacific Northwest National Laboratory have identified or confirmed 490 proteins in human blood serum — nearly doubling the number of known serum proteins, according to a paper accepted for publication in the December issue of Molecular and Cellular Proteomics.


Using liquid chromatography and mass spectrometry instrumentation, Pacific Northwest National Laboratory scientists identified and characterized nearly twice as many proteins in blood serum than previously noted, which provides a greater library of proteins to study for potential use in disease diagnosis.



“We have performed the most extensive identification of proteins in serum to date,” said Joel Pounds, corresponding author and a PNNL staff scientist. “We studied blood serum because it holds clues to all the major processes in our bodies. We need to know what proteins exist in that serum to know how they might be used to predict disease susceptibility, monitor disease progression or diagnose disease.”

These clues include proteins that “leak” from dead and dying cells, and proteins secreted into blood or released from tumors. Identifying these proteins allows scientists to conduct additional studies to define each protein’s functional role in cells and the body.


The scientific community has studied plasma, the parent component to serum, for more than a hundred years. Recent studies have primarily utilized a technique called two-dimensional gel electrophoresis to study proteins found in plasma, yet this method is limited in its ability to identify proteins that exist in small amounts, known as low-abundance proteins, and is labor intensive. The identification of low-abundance proteins is important as many of these proteins often function as “messengers” that inform cells to turn signaling pathways on or off — such functions are central to cell death or disease development.

“After a long period of slow progress, research on the plasma proteome has begun a period of explosive growth attributable to new multidimensional fractionation methods,” said N. Leigh Anderson, founder and chief executive officer of The Plasma Proteome Institute (www.plasmaproteome.org). “PNNL’s work is an important early demonstration of the power of these methods, and suggests that hundreds, if not thousands, of new candidate markers will be found.”

Studying the proteome of blood serum was a natural fit for scientists at PNNL, which has a strong proteomics capability. A proteome is the collection of proteins expressed by a cell under a specific set of conditions at a certain time. Through its Biomolecular Systems Initiative, the laboratory is supporting multidisciplinary research in systems biology. Scientists have developed unique technologies that allow for more thorough analysis of proteins and have studied the proteome of ovarian cancer as well as other disease states.

Pounds and his team, which included lead author and post-doctoral researcher Joshua Adkins, used chromatography and mass spectrometry instead of the more traditional 2-D gel electrophoresis to identify proteins, including low-abundance proteins not previously identified in serum and proteins with an unknown function. Their overall analysis was conducted on a single human blood serum sample from a healthy anonymous female donor.

The majority of serum protein consists of a few, very abundant proteins. One of the current challenges in the field is that the presence of abundant proteins obscures the measurement of many low-abundance proteins, and that removal of these abundant proteins may result in the simultaneous removal of low-abundance proteins. Here, Pounds and his team kept those abundant proteins, but simplified the mass spectrometry by fractionating the peptides according to charge state.

Once fractionated to allow for the analysis of lower abundance proteins, the samples were analyzed using a mass spectrometer that had been programmed to concentrate on specific ranges of peptide size during several analyses, thereby providing a more complete analysis of the proteome. The researchers employed powerful mass spectrometers housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national user facility located at PNNL.

The sample preparation and analysis approach allowed PNNL scientists to expand the range of proteins that could be identified. For example, prostate-specific antigen (PSA) was identified in the sample using this approach. The reference value for PSA is in extremely low abundance in women, along the order of less than 1 picogram per milliliter. Detecting its presence provided a control to learn how well PNNL’s approach identified low-abundance proteins.

“With this study, we have taken a large step toward defining the protein composition of serum,” Pounds said. “But many more steps and technological improvements are needed to move beyond these 490 proteins to the thousands of proteins that may be present in blood serum.”

Molecular and Cellular Proteomics is a new journal distributed by the American Society for Biochemistry and Molecular Biology. Pounds’ paper is available online at http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf. A recent paper authored by Anderson and appearing in this journal also is available online at http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov. PNNL’s Biomolecular Systems Initiative is online at http://www.biomolecular.org.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!
Further information:
http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf
http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf
http://www.biomolecular.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>