Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blasting Antibodies with Lasers Provides Direct Way of Measuring Their Flexibilities

18.12.2002


A group of scientists at The Scripps Research Institute (TSRI) and San Diego Supercomputer Center at the University of California at San Diego (UCSD) have used a powerful laser in combination with innovative quantum mechanical computations to measure the flexibility of mouse antibodies.



The new technique, described in an upcoming issue of the journal Proceedings of the National Academy of Sciences, is significant because protein flexibility is believed to play an important role in antibody-antigen recognition, one of the fundamental events in the human immune system.

"This is the first time anybody has ever gone into a protein and experimentally measured the frequency of protein vibrations in response to an applied force," says Floyd Romesberg, assistant professor in the Department of Chemistry at The Scripps Research Institute, who led the study.


"Our results show that the motions of the antibody-antigen complexes can range over four orders of magnitude, from tens of femtoseconds to hundreds of picoseconds," says co-author Kim K. Baldridge, Ph.D., director of Integrative Computational Sciences at the San Diego Supercomputer Center and an adjunct professor of Chemistry at UCSD. "This is evidence of a general mechanism of antigen-antibody interactions—which range from rigid to flexible," she adds.

Flexibility of Proteins

Protein flexibility is an important concept in biology because of its role in protein-protein and protein-ligand recognition. One of the longest running debates in molecular recognition is how proteins recognize and bind to other molecules—whether it resembles putting a key into a lock (the lock and key model) or catching a baseball in a catcher’s mitt (the induced fit model).

There are lots of ideas about mechanisms of antigen recognition postulated in the literature, but what the debate comes down to is really a question of flexibility. How flexible are proteins?

Unfortunately, flexibility is difficult to characterize experimentally, and there has never been a study like this one to carefully examine the details of antibody recognition of antigen at the molecular level, which involves bond vibrations that ever-so-slightly displace atoms a million times every millionth of a second. Scientists have had a tough time studying these vibrations because the two main techniques that allow them to "look" at proteins—nuclear magnetic resonance (NMR) and X-ray crystallography—cannot be used.

X-ray crystallography provides only average structures, which provide no direct information on a protein’s flexibility. NMR can, in principle, be used to measure a protein’s flexibility, but in practice is limited to slow timescales, involving large amplitude motions. Moreover, the number of atoms within a molecule the size of an antibody is so large that drawing conclusions from the data is nearly impossible.

Now Romesberg, Baldridge, and their colleagues have developed a way to measure the flexibility of proteins over timescales ranging from femtoseconds to nanoseconds using a combination of spectroscopy and quantum mechanical techniques.

Shaken Not Stirred

For years biochemists have routinely used bench top ultraviolet and visible light spectrometers to measure things like protein concentration or to follow chemical reactions. However, Romesberg’s spectrometer is not the kind you might find in any catalog of equipment lying around the lab.

This laser, built by Romesberg and Research Associate Ralph Jimenez, Ph.D., takes up an entire room and emits a burst of photons in a roughly 50-femtosecond pulse—which is billions of times faster than the fastest shutter speed on a good camera. This incredible speed is necessary, because just as a fast shutter speed captures a fast movement on film, a fast laser captures a fast movement within a protein.

"The laser allows us to take ’photographs’ of a protein vibrating," says Romesberg.

In their experiments, Romesberg and Jimenez mix human antibodies with dye molecules. When the mixture is blasted with the laser beam, the dye molecules absorb energy from the laser and transmit some of this energy into the antibody.

The only place for the energy to go within the antibody is for it to be absorbed by vibrating bonds within the protein. The electron distribution in these bonds may then change, depending on how much they vibrate. By comparing an excited, "spectra" readout to a normal spectrum, Romesberg and his colleagues can assess how flexible particular parts of a protein are.

This is not always simple. Antibodies are large proteins with lots of vibrating bonds, and molecular motions. Quantum mechanical calculations can help researchers delineate which motions are primary participants in the antibody-antigen recognition process. Baldridge took the results of these computations and provided a visual way to understand the effect of the force on the protein.

The quantum mechanical calculations actually give a depiction of the electrostatic processes that are occurring. Together with the experimental information, this helps complete the puzzle of how various bonds are moving, twisting, and interacting with other atoms in the protein environment.

The lock-and-key model specifies that if the antigen and antibody are not matched up in a rigid, structural way, they will not bind. Romesberg, Baldridge, and their colleagues found this to be true for one of the antibodies they tested. But two of the other antibodies appeared to wiggle a lot to achieve their optimal energetic state.

Antibody recognition, says Romesberg, may not be a simple, lock-and-key mechanism, but one in which the keys and the locks are vibrating and changing their shape as they come together in solution.

The article, "Flexibility and Molecular Recognition in the Immune System" was authored by Ralph Jimenez, Georgina Salazar, Kim K. Baldridge, and Floyd E. Romesberg, and appears in the online edition of the journal Proceedings of the National Academy of Sciences the week of December 16, 2002. The article will appear in print early next year.

This work was supported by The Skaggs Institute for Chemical Biology, the National Science Foundation, and the National Institutes of Health.


For more information contact:
Keith McKeown
10550 North Torrey Pines Road
La Jolla, California 92037

Tel: 858.784.8134
Fax: 858.784.8118
kmckeown@scripps.edu

Keith McKeown | EurekAlert!

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>