Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for anemia (type CDA-1) discovered

17.12.2002


A rare type of the disease found mainly in Bedouins may provide insight into anemia



A combined effort between scientists at Schneider Children’s Medical Center of Israel, Tel Aviv University, and the Weizmann Institute of Science has led to the discovery of a gene responsible for a type of anemia primarily found in a number of Bedouin families, called congenital dyserythropoietic anemia-1 (CDA-1). The findings, published in the December issue of The American Journal for Human Genetics, could lead to effective detection and eventually treatment of the disease. In addition, understanding the role of this gene’s protein product in the body could provide important clues to other types of anemia, as well as to the general mechanisms of blood cell formation.
CDA-1 is characterized by a medium to high deficiency in blood production, and in critical cases patients must receive blood transfusions throughout their lifetime. It is a rare disease present worldwide, but the largest vulnerable group is the Negev Desert’s Bedouin population, where marriage among relatives is common. The high disease prevalence in this Israeli population was crucial to the identification of the CDA-1 gene.

The study group included 45 Bedouins treated by Dr. Hannah Shalev at the Soroka Medical Center in Beer Sheva. Initially, a team headed by Dr. Hannah Tamary, who works both at Schneider and the Felsenstein Medical Research Center in Tel Aviv University’s Faculty of Medicine, narrowed down the search for the gene to a region on a specific chromosome (chromosome15) . To uncover the gene in that region, they then turned to Profs. Doron Lancet and Jacques S. Beckmann of the Crown Human Genome Center at the Weizmann Institute’s Molecular Genetics Department. Both teams, after four years of intensive research, discovered and characterized the previously unknown gene, named CDAN1.



Dr. Orly Degani, who works with Tamary, says: "The genomic region within which the gene for CDA-1 was hiding was unusually complex. In some of the patients, a complete DNA segment was missing, but it turned out that this did not cause the disease."

"We thought fifteen genes were good candidates," says Dr. Nili Avidan, who works with Beckmann and Lancet. "We began checking them one after the other, from short, defined genes to long, putative ones. This gene was one before the last."

The researchers observed that mutations in this specific gene correlate with the disease. These mutations modify a previously unknown protein, which they named Codanin-1. The protein, they suspect, is present in the nuclear envelope of bone marrow cells, which divide and give rise to red blood cells. Studies of this protein, which may become an important pharmaceutical target similar to erythropoietin (EPO) may yield a better understanding of blood cell maturation and anemia and eventually lead to an effective remedy for CDA-1.

Prof Lancet’s research is supported by Wolfson Family Charitable Trust, Crown Human Genome Center, Henri and Francoise Glasberg Foundation, Alfried Krupp von Bohlen und Halbach Foundation, Kalman & Ida Wolens Foundation, the Avraham and Yehudit (Judy) Goldwasser Fund, Ms. Emilia Mosseri, London, Mr. James Klutznick, Chicago, IL and the Jean-Jacques Brunschwig Memorial Fund.

Prof. Lancet is the incumbent of the Ralph and Lois Silver Professorial Chair in Human Genomics.

Jeffrey J. Sussman | EurekAlert!

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>