Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for anemia (type CDA-1) discovered

17.12.2002


A rare type of the disease found mainly in Bedouins may provide insight into anemia



A combined effort between scientists at Schneider Children’s Medical Center of Israel, Tel Aviv University, and the Weizmann Institute of Science has led to the discovery of a gene responsible for a type of anemia primarily found in a number of Bedouin families, called congenital dyserythropoietic anemia-1 (CDA-1). The findings, published in the December issue of The American Journal for Human Genetics, could lead to effective detection and eventually treatment of the disease. In addition, understanding the role of this gene’s protein product in the body could provide important clues to other types of anemia, as well as to the general mechanisms of blood cell formation.
CDA-1 is characterized by a medium to high deficiency in blood production, and in critical cases patients must receive blood transfusions throughout their lifetime. It is a rare disease present worldwide, but the largest vulnerable group is the Negev Desert’s Bedouin population, where marriage among relatives is common. The high disease prevalence in this Israeli population was crucial to the identification of the CDA-1 gene.

The study group included 45 Bedouins treated by Dr. Hannah Shalev at the Soroka Medical Center in Beer Sheva. Initially, a team headed by Dr. Hannah Tamary, who works both at Schneider and the Felsenstein Medical Research Center in Tel Aviv University’s Faculty of Medicine, narrowed down the search for the gene to a region on a specific chromosome (chromosome15) . To uncover the gene in that region, they then turned to Profs. Doron Lancet and Jacques S. Beckmann of the Crown Human Genome Center at the Weizmann Institute’s Molecular Genetics Department. Both teams, after four years of intensive research, discovered and characterized the previously unknown gene, named CDAN1.



Dr. Orly Degani, who works with Tamary, says: "The genomic region within which the gene for CDA-1 was hiding was unusually complex. In some of the patients, a complete DNA segment was missing, but it turned out that this did not cause the disease."

"We thought fifteen genes were good candidates," says Dr. Nili Avidan, who works with Beckmann and Lancet. "We began checking them one after the other, from short, defined genes to long, putative ones. This gene was one before the last."

The researchers observed that mutations in this specific gene correlate with the disease. These mutations modify a previously unknown protein, which they named Codanin-1. The protein, they suspect, is present in the nuclear envelope of bone marrow cells, which divide and give rise to red blood cells. Studies of this protein, which may become an important pharmaceutical target similar to erythropoietin (EPO) may yield a better understanding of blood cell maturation and anemia and eventually lead to an effective remedy for CDA-1.

Prof Lancet’s research is supported by Wolfson Family Charitable Trust, Crown Human Genome Center, Henri and Francoise Glasberg Foundation, Alfried Krupp von Bohlen und Halbach Foundation, Kalman & Ida Wolens Foundation, the Avraham and Yehudit (Judy) Goldwasser Fund, Ms. Emilia Mosseri, London, Mr. James Klutznick, Chicago, IL and the Jean-Jacques Brunschwig Memorial Fund.

Prof. Lancet is the incumbent of the Ralph and Lois Silver Professorial Chair in Human Genomics.

Jeffrey J. Sussman | EurekAlert!

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>