Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene responsible for anemia (type CDA-1) discovered

17.12.2002


A rare type of the disease found mainly in Bedouins may provide insight into anemia



A combined effort between scientists at Schneider Children’s Medical Center of Israel, Tel Aviv University, and the Weizmann Institute of Science has led to the discovery of a gene responsible for a type of anemia primarily found in a number of Bedouin families, called congenital dyserythropoietic anemia-1 (CDA-1). The findings, published in the December issue of The American Journal for Human Genetics, could lead to effective detection and eventually treatment of the disease. In addition, understanding the role of this gene’s protein product in the body could provide important clues to other types of anemia, as well as to the general mechanisms of blood cell formation.
CDA-1 is characterized by a medium to high deficiency in blood production, and in critical cases patients must receive blood transfusions throughout their lifetime. It is a rare disease present worldwide, but the largest vulnerable group is the Negev Desert’s Bedouin population, where marriage among relatives is common. The high disease prevalence in this Israeli population was crucial to the identification of the CDA-1 gene.

The study group included 45 Bedouins treated by Dr. Hannah Shalev at the Soroka Medical Center in Beer Sheva. Initially, a team headed by Dr. Hannah Tamary, who works both at Schneider and the Felsenstein Medical Research Center in Tel Aviv University’s Faculty of Medicine, narrowed down the search for the gene to a region on a specific chromosome (chromosome15) . To uncover the gene in that region, they then turned to Profs. Doron Lancet and Jacques S. Beckmann of the Crown Human Genome Center at the Weizmann Institute’s Molecular Genetics Department. Both teams, after four years of intensive research, discovered and characterized the previously unknown gene, named CDAN1.



Dr. Orly Degani, who works with Tamary, says: "The genomic region within which the gene for CDA-1 was hiding was unusually complex. In some of the patients, a complete DNA segment was missing, but it turned out that this did not cause the disease."

"We thought fifteen genes were good candidates," says Dr. Nili Avidan, who works with Beckmann and Lancet. "We began checking them one after the other, from short, defined genes to long, putative ones. This gene was one before the last."

The researchers observed that mutations in this specific gene correlate with the disease. These mutations modify a previously unknown protein, which they named Codanin-1. The protein, they suspect, is present in the nuclear envelope of bone marrow cells, which divide and give rise to red blood cells. Studies of this protein, which may become an important pharmaceutical target similar to erythropoietin (EPO) may yield a better understanding of blood cell maturation and anemia and eventually lead to an effective remedy for CDA-1.

Prof Lancet’s research is supported by Wolfson Family Charitable Trust, Crown Human Genome Center, Henri and Francoise Glasberg Foundation, Alfried Krupp von Bohlen und Halbach Foundation, Kalman & Ida Wolens Foundation, the Avraham and Yehudit (Judy) Goldwasser Fund, Ms. Emilia Mosseri, London, Mr. James Klutznick, Chicago, IL and the Jean-Jacques Brunschwig Memorial Fund.

Prof. Lancet is the incumbent of the Ralph and Lois Silver Professorial Chair in Human Genomics.

Jeffrey J. Sussman | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>