Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganism isolated in space

17.12.2002


How far up into the sky does the biosphere extend? Do microorganisms exist at heights of 40 km and in what quantity? To answer these questions several research institutes in India collaborated on a path-breaking project to send balloon-borne sterile "cryosamplers" into the stratosphere. The programme was led by cosmologist Professor Jayant Narlikar, Director of the Inter University Centre for Astronomy and Astrophysics in Pune, with scientists at the Indian Space Research Organisation and the Tata Institute of Fundamental Studies contributing their various expertise.



Large volumes of air from the stratosphere at heights ranging from 20 to 41km were collected on 21 January 2001. The programme of analysis of samples in the UK was organised by Professor Chandra Wickramasinghe of Cardiff University, co-proponent with the late Sir Fred Hoyle of the modern theory of panspermia. This theory states that the Earth was seeded in the past, and is still being seeded, with microorganisms from comets.

Last year a team of biologists at Cardiff University’s School of Biosciences reported evidence of viable bacteria in air samples at 41km in such quantity that implied a world-wide settling rate of one tonne of bacterial material per day. Although living bacteria were seen they could not be grown in the laboratory. Dr Milton Wainwright of Sheffield University’s Department of Molecular Biology and Biotechnology, was asked to apply his skills to growing the organisms. Dr Wainwright isolated a fungus and two bacteria from one of the space derived samples collected at 41km. The presence of bacteria in these samples was then independently confirmed. These results are published in this month’s issue of a prestigious microbiology journal FEMS Letters (Wainwright et al, 2002), published by Elsevier. The isolated organisms are very similar to known terrestrial varieties. There are however notable differences in their detailed properties, possibly pointing to a different origin. Furthermore, it should be stressed that these microorganisms are not common laboratory contaminants.


Dr Wainwright says, however, "Contamination is always a possibility in such studies but the "internal logic" of the findings points strongly to the organisms being isolated in space, at a height of 41km. Of course the results would have been more readily accepted and lauded by critics had we isolated novel organisms, or ones with NASA written on them! However, we can only report what we have found in good faith".

The new work of Wainwright et al is consistent with the ideas of Hoyle and Wickramasinghe that in fact predict the continuing input onto the Earth of "modern" organisms. In recent years and months there has been a growing body of evidence that can be interpreted as support for the theory of panspermia - e.g. the space survival attributes and general space hardiness of bacteria.

Chandra Wickramasinghe | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>