Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse gene knockout illuminates how light resets clock

16.12.2002


A key role in synchronizing daily rhythms to the day/night cycle has been traced to a light-sensitive protein in the eye, by knocking out the gene that codes for it. Mice lacking a gene for the photopigment melanopsin show a dramatic deficiency in their ability to regulate their circadian rhythms by light. The discovery, by National Institute of Mental Health (NIMH) grantees, helps unravel the heretofore elusive mechanisms by which day/night cycles regulate such rhythms in mammals. NIMH grantees Ignacio Provencio, Ph.D., Uniformed Services University of the Health Sciences (USUHS), and Steve Kay, Ph.D., The Scripps Research Institute, and colleagues report on their findings in the December 13 Science.*



In a similar knockout mouse study reported in the same issue of Science, another research team, led by NIMH grantee Norman Ruby, Ph.D., Stanford University, also found melanopsin to be a "significant contributor" to circadian function.**

Each day, a clock in the brain’s hypothalamus that governs daily rhythms – sleeping/waking, body temperature, eating, arousal. -- is reset by light detected in the eyes. Yet, how this works has been a mystery. Light can still reset the clock even if the rods and cones, the photoreceptors in the retina for vision, are removed, but not if the eyes are removed. Hence, scientists have hypothesized that the eyes must contain a system of photoreceptors for resetting the clock that is separate from the system for sight.


Retinal ganglion cells, which contain melanopsin, have emerged as a prime candidate only within the past year. While most of these cells are wired to parts of the brain involved in vision, about one or two percent of those in a rodent’s retina project to other areas, including the clock, located in an area of the hypothalamus called the suprachiasmatic nucleus.

"Unlike the rods and cones, this light-detection system is thought to respond to the level of illumination rather than to images," explained Provencio. "It may have an important impact on general well being, since among other functions, light levels and time of day can modulate mood, activity levels, and even performance."

Using mouse embryonic stem cells, Provencio, Kay and colleagues altered the gene to create a strain of mice that lacked a functioning gene for melanopsin. The mice appeared healthy and showed normal activity rhythms as they ran on wheels in constant darkness. This suggested that melanopsin is not involved in the normal functioning of the clock itself.

Then, the researchers exposed the melanopsin knockout mice to 15 minutes of blue light at a time in their cycle when normal mice show strong phase delays -- alterations in the time of onset of activity in response to light. The mice lacking melanopsin showed significantly less phase delay than normal control mice, likely because of reduced sensitivity in signals from the retina to the clock. To confirm this deficit in light input, the knockout mice were exposed to constant white light, which normally would trigger phase adjustments resulting in a longer internal clock day than in constant darkness. The melanopsin-deprived mice showed a shorter lengthening of their internal clock day than the control mice.

"Light input to the clock was significantly reduced in the melanopsin-deficient animals," said Provencio. "The sensitivity of their circadian system to light was reduced by 50 to 80 percent."

Although the study shows that melanopsin significantly influences the resetting of the clock at three different light intensities, exactly how this protein translates light into a neural signal isn’t yet known.

The researchers propose that melanopsin is required for normal setting of the brain’s clock by light, but that other mechanisms for light input also play a role, since the animals still show some phase shifting. As in plants and flies, "independent photoreceptors with overlapping roles may function to adapt the organism to the natural changes in light quality and irradiance," they suggest.


###
Also participating in the study were: Drs. Satchidananda Panda, Trey Sato, John Hogenesch, Genomics Institute of the Novartis Research Foundation; Drs. Ana Maria Castrucci, Mark Rollag, USUHS; Dr. Willem DeGrip, University of Nijmegen.

Other funders of the Provencino/Kay study included the American Cancer Society, the European Union and the Novartis Science Foundation. The Ruby study was also supported by grants from the National Heart, Lung, and Blood Institute (NHLBI), the National Institute on Drug Abuse (NIDA), and Deltagen, Inc.

* Satchidananda Panda, Trey K. Sato, Ana Maria Castrucci, Mark D. Rollag, Willem J. DeGrip, John B. Hogenesch, Ignacio Provencio, and Steve A. Kay, Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting, Science Dec 13 2002: 2213-2216.

** Norman F. Ruby, Thomas J. Brennan, Xinmin Xie, Vinh Cao, Paul Franken, H. Craig Heller, and Bruce F. O’Hara, Role of Melanopsin in Circadian Responses to Light, Science Dec 13 2002: 2211-2213.

NIMH, NHLBI and NIDA are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.


Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>