Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse gene knockout illuminates how light resets clock

16.12.2002


A key role in synchronizing daily rhythms to the day/night cycle has been traced to a light-sensitive protein in the eye, by knocking out the gene that codes for it. Mice lacking a gene for the photopigment melanopsin show a dramatic deficiency in their ability to regulate their circadian rhythms by light. The discovery, by National Institute of Mental Health (NIMH) grantees, helps unravel the heretofore elusive mechanisms by which day/night cycles regulate such rhythms in mammals. NIMH grantees Ignacio Provencio, Ph.D., Uniformed Services University of the Health Sciences (USUHS), and Steve Kay, Ph.D., The Scripps Research Institute, and colleagues report on their findings in the December 13 Science.*



In a similar knockout mouse study reported in the same issue of Science, another research team, led by NIMH grantee Norman Ruby, Ph.D., Stanford University, also found melanopsin to be a "significant contributor" to circadian function.**

Each day, a clock in the brain’s hypothalamus that governs daily rhythms – sleeping/waking, body temperature, eating, arousal. -- is reset by light detected in the eyes. Yet, how this works has been a mystery. Light can still reset the clock even if the rods and cones, the photoreceptors in the retina for vision, are removed, but not if the eyes are removed. Hence, scientists have hypothesized that the eyes must contain a system of photoreceptors for resetting the clock that is separate from the system for sight.


Retinal ganglion cells, which contain melanopsin, have emerged as a prime candidate only within the past year. While most of these cells are wired to parts of the brain involved in vision, about one or two percent of those in a rodent’s retina project to other areas, including the clock, located in an area of the hypothalamus called the suprachiasmatic nucleus.

"Unlike the rods and cones, this light-detection system is thought to respond to the level of illumination rather than to images," explained Provencio. "It may have an important impact on general well being, since among other functions, light levels and time of day can modulate mood, activity levels, and even performance."

Using mouse embryonic stem cells, Provencio, Kay and colleagues altered the gene to create a strain of mice that lacked a functioning gene for melanopsin. The mice appeared healthy and showed normal activity rhythms as they ran on wheels in constant darkness. This suggested that melanopsin is not involved in the normal functioning of the clock itself.

Then, the researchers exposed the melanopsin knockout mice to 15 minutes of blue light at a time in their cycle when normal mice show strong phase delays -- alterations in the time of onset of activity in response to light. The mice lacking melanopsin showed significantly less phase delay than normal control mice, likely because of reduced sensitivity in signals from the retina to the clock. To confirm this deficit in light input, the knockout mice were exposed to constant white light, which normally would trigger phase adjustments resulting in a longer internal clock day than in constant darkness. The melanopsin-deprived mice showed a shorter lengthening of their internal clock day than the control mice.

"Light input to the clock was significantly reduced in the melanopsin-deficient animals," said Provencio. "The sensitivity of their circadian system to light was reduced by 50 to 80 percent."

Although the study shows that melanopsin significantly influences the resetting of the clock at three different light intensities, exactly how this protein translates light into a neural signal isn’t yet known.

The researchers propose that melanopsin is required for normal setting of the brain’s clock by light, but that other mechanisms for light input also play a role, since the animals still show some phase shifting. As in plants and flies, "independent photoreceptors with overlapping roles may function to adapt the organism to the natural changes in light quality and irradiance," they suggest.


###
Also participating in the study were: Drs. Satchidananda Panda, Trey Sato, John Hogenesch, Genomics Institute of the Novartis Research Foundation; Drs. Ana Maria Castrucci, Mark Rollag, USUHS; Dr. Willem DeGrip, University of Nijmegen.

Other funders of the Provencino/Kay study included the American Cancer Society, the European Union and the Novartis Science Foundation. The Ruby study was also supported by grants from the National Heart, Lung, and Blood Institute (NHLBI), the National Institute on Drug Abuse (NIDA), and Deltagen, Inc.

* Satchidananda Panda, Trey K. Sato, Ana Maria Castrucci, Mark D. Rollag, Willem J. DeGrip, John B. Hogenesch, Ignacio Provencio, and Steve A. Kay, Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting, Science Dec 13 2002: 2213-2216.

** Norman F. Ruby, Thomas J. Brennan, Xinmin Xie, Vinh Cao, Paul Franken, H. Craig Heller, and Bruce F. O’Hara, Role of Melanopsin in Circadian Responses to Light, Science Dec 13 2002: 2211-2213.

NIMH, NHLBI and NIDA are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.


Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>