Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse gene knockout illuminates how light resets clock


A key role in synchronizing daily rhythms to the day/night cycle has been traced to a light-sensitive protein in the eye, by knocking out the gene that codes for it. Mice lacking a gene for the photopigment melanopsin show a dramatic deficiency in their ability to regulate their circadian rhythms by light. The discovery, by National Institute of Mental Health (NIMH) grantees, helps unravel the heretofore elusive mechanisms by which day/night cycles regulate such rhythms in mammals. NIMH grantees Ignacio Provencio, Ph.D., Uniformed Services University of the Health Sciences (USUHS), and Steve Kay, Ph.D., The Scripps Research Institute, and colleagues report on their findings in the December 13 Science.*

In a similar knockout mouse study reported in the same issue of Science, another research team, led by NIMH grantee Norman Ruby, Ph.D., Stanford University, also found melanopsin to be a "significant contributor" to circadian function.**

Each day, a clock in the brain’s hypothalamus that governs daily rhythms – sleeping/waking, body temperature, eating, arousal. -- is reset by light detected in the eyes. Yet, how this works has been a mystery. Light can still reset the clock even if the rods and cones, the photoreceptors in the retina for vision, are removed, but not if the eyes are removed. Hence, scientists have hypothesized that the eyes must contain a system of photoreceptors for resetting the clock that is separate from the system for sight.

Retinal ganglion cells, which contain melanopsin, have emerged as a prime candidate only within the past year. While most of these cells are wired to parts of the brain involved in vision, about one or two percent of those in a rodent’s retina project to other areas, including the clock, located in an area of the hypothalamus called the suprachiasmatic nucleus.

"Unlike the rods and cones, this light-detection system is thought to respond to the level of illumination rather than to images," explained Provencio. "It may have an important impact on general well being, since among other functions, light levels and time of day can modulate mood, activity levels, and even performance."

Using mouse embryonic stem cells, Provencio, Kay and colleagues altered the gene to create a strain of mice that lacked a functioning gene for melanopsin. The mice appeared healthy and showed normal activity rhythms as they ran on wheels in constant darkness. This suggested that melanopsin is not involved in the normal functioning of the clock itself.

Then, the researchers exposed the melanopsin knockout mice to 15 minutes of blue light at a time in their cycle when normal mice show strong phase delays -- alterations in the time of onset of activity in response to light. The mice lacking melanopsin showed significantly less phase delay than normal control mice, likely because of reduced sensitivity in signals from the retina to the clock. To confirm this deficit in light input, the knockout mice were exposed to constant white light, which normally would trigger phase adjustments resulting in a longer internal clock day than in constant darkness. The melanopsin-deprived mice showed a shorter lengthening of their internal clock day than the control mice.

"Light input to the clock was significantly reduced in the melanopsin-deficient animals," said Provencio. "The sensitivity of their circadian system to light was reduced by 50 to 80 percent."

Although the study shows that melanopsin significantly influences the resetting of the clock at three different light intensities, exactly how this protein translates light into a neural signal isn’t yet known.

The researchers propose that melanopsin is required for normal setting of the brain’s clock by light, but that other mechanisms for light input also play a role, since the animals still show some phase shifting. As in plants and flies, "independent photoreceptors with overlapping roles may function to adapt the organism to the natural changes in light quality and irradiance," they suggest.

Also participating in the study were: Drs. Satchidananda Panda, Trey Sato, John Hogenesch, Genomics Institute of the Novartis Research Foundation; Drs. Ana Maria Castrucci, Mark Rollag, USUHS; Dr. Willem DeGrip, University of Nijmegen.

Other funders of the Provencino/Kay study included the American Cancer Society, the European Union and the Novartis Science Foundation. The Ruby study was also supported by grants from the National Heart, Lung, and Blood Institute (NHLBI), the National Institute on Drug Abuse (NIDA), and Deltagen, Inc.

* Satchidananda Panda, Trey K. Sato, Ana Maria Castrucci, Mark D. Rollag, Willem J. DeGrip, John B. Hogenesch, Ignacio Provencio, and Steve A. Kay, Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting, Science Dec 13 2002: 2213-2216.

** Norman F. Ruby, Thomas J. Brennan, Xinmin Xie, Vinh Cao, Paul Franken, H. Craig Heller, and Bruce F. O’Hara, Role of Melanopsin in Circadian Responses to Light, Science Dec 13 2002: 2211-2213.

NIMH, NHLBI and NIDA are part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>