Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed new light on the body’s internal clock

13.12.2002


As mammals, our internal (circadian) clock is regulated by the patterns of light and dark we experience. But how that information is transmitted from the eye to the biological clock in the brain has been a matter of scientific debate. Scientists had suspected that a molecule called melanopsin, which is found in the retina, plays an important role.



Now researchers at Stanford University and Deltagen Inc. have confirmed that melanopsin does indeed transmit light information from the eye to the part of the brain that controls the internal clock. According to the researchers, melanopsin may be one of several photosensitive receptors that work redundantly to regulate the circadian system.

"This study clarifies the role of melanopsin in setting and maintaining the circadian clock," said Bruce O’Hara, senior research scientist at Stanford and co-author of the study published in the Dec. 13 issue of the journal Science.


O’Hara noted that without a circadian clock many behavioral and physiological traits of mammals would be disturbed - including body temperature, activity levels and sleep.

"Instead of being able to sleep for extended periods of time, we would be at the mercy of unpredictable bursts of sleep and activity," added Stanford senior research scientist Norman Ruby, lead author of the study.

Photoreceptors

For a circadian clock to function, it must be able to detect and respond to light. In mammals, the only cells specialized to do this are in the eyes, which means that our eyes not only allow us to see the world but also synchronize our body’s internal rhythms.

Photoreceptors are specialized cells that can detect light and send signals to the brain, which then processes and interprets the information - allowing us to see. Rods and cones, which are located in the retina, are the primary photoreceptors for vision. Researchers first thought that these molecules had dual roles in vision and setting the circadian clock. But experiments showed that animals lacking rods or cones could still modify their internal clocks in response to changing light conditions. This led scientists to hunt for an alternate photoreceptor that could regulate the circadian system.

Melanopsin, a molecule originally found in frog skin, was the most likely suspect. Scientists discovered that melanopsin molecules in frog skin cells sense and respond to light. The molecule later was found in frog and mouse retinas, and complementary studies determined that cells containing melanopsin send signals to different parts of the brain - further evidence of the molecule’s potential role in setting the circadian clock.

The only test that remained was to determine if the circadian clock could function without melanopsin. To accomplish that, Ruby and O’Hara teamed up with Deltagen Inc., a company based in Redwood City, Calif., that specializes in deleting specific genes from mice. Deltagen deleted (or "knocked out") the melanopsin gene in mice. The Stanford group then used the knockout mice to determine the relative role of melanopsin in transmitting light information to the circadian system.

Lowered response

In their Science study, the researchers found that the circadian system in melanopsin-depleted knockout mice had a 40 percent decrease in their ability to respond to changes in light intensity compared with normal mice. This result led the scientists to conclude that, although melanopsin is important, it is not the only molecule involved in setting the circadian clock.

"Melanopsin is one of the key players, but it is not the only player," Ruby and O’Hara explained, noting that the knockout mice, which lacked melanopsin, continued to respond to new light patterns, albeit less efficiently. The researchers concluded that the eye and the brain probably have redundant systems that contribute to regulating and resetting the circadian clock. Such redundancy would be evolutionarily advantageous, they added.

"Deltagen is very pleased with the work flowing from our collaboration with Stanford, and we commend the scientists involved in this study on their work to further elucidate the role of melanopsin in the sleep cycle," said Mark Moore, chief scientific officer of Deltagen Inc. "We believe that our company’s high throughput gene knockout approach, coupled with our comprehensive systems biology analysis program, will continue to be instrumental in leading researchers to gene function - and ultimately to new pharmaceutical targets and drug candidates."

While the Science study confirms that melanopsin can transmit information to the circadian clock, future studies will focus on identifying the relative contributions of other molecules to circadian clock maintenance, Ruby and O’Hara noted.



Other co-authors of the Science study are Thomas J. Brennan and Ximmin Xie of Deltagen, and Vinh Cao, Paul Franken and H. Craig Heller of the Department of Biological Sciences at Stanford. This project was funded by the National Institutes of Health and Deltagen.

Caroline Uhlik is a science-writing intern at the Stanford News Service.

By Caroline Uhlik

CONTACT: Mark Shwartz, News Service: 650-723-9296, mshwartz@stanford.edu

COMMENT: Bruce F O’Hara, Biological Sciences: (650) 725-6510, bfo@stanford.edu
Norman F. ("Bud") Ruby, Biological Sciences: 650-725-6510, ruby@stanford.edu
Nina Ferrari, Deltagen: 650-569-5154, nferrari@deltagen.com

EDITORS: The study, "Role of Melanopsin in Circadian Responses to Light," will be published in the Dec. 13 issue of Science. A copy of the study can be obtained by contacting the AAAS Office of Public Programs at 202-326-6440 or scipak@aaas.org.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu/dept/biology/indexfac4.html
http://www.deltagen.com
http://www.stanford.edu/news/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>