Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Checkpoint protein blocks chromosome breaks at fragile sites

13.12.2002


With 46 chromosomes and six feet of DNA to copy every time most human cells divide, it’s not surprising that gaps or breaks sometimes show up in the finished product – especially when the cell is under stress or dividing rapidly, as in cancer.



But what is surprising – according to Thomas Glover, Ph.D., a geneticist at the University of Michigan Medical School – is that the breaks don’t always occur at random. They happen at a few specific locations on chromosomes, when cells are under stress, during the stages in the cell cycle where DNA is copied, or replicated, and the cell splits into two identical daughter cells.

Scientists call them fragile sites, but the reasons for their inherent instability have remained a mystery. Now Glover and colleagues at the U-M Medical School and the Howard Hughes Medical Institute have discovered that a protein called ATR protects fragile sites from breaking during DNA replication. Results of their research will be published in the Dec.13 issue of Cell.


The discovery is significant because it is the first evidence of a major molecular pathway that regulates genome stability at chromosomal fragile sites. Since fragile site breaks are very common in some tumor cells and often occur near genes associated with tumors, defects in the ATR protein pathway may be involved in the progression of cancer.

Seventy-five fragile sites have been identified in the human genome, but most are rarely seen, according to Glover, a U-M professor of human genetics and of pediatrics, who directed the study. "Twenty sites account for 80 percent of all chromosome breaks, and five sites are responsible for nearly half the breaks," says Glover.

Fragile sites are large and can extend over hundreds of thousands of DNA base pairs. "The most common fragile site, FRA3B, spans at least 500 kilobases," says Anne M. Casper, a U-M graduate student in human genetics and first author on the Cell paper. "In different metaphases – the stage in the cell cycle when a cell divides into two identical cells – FRA3B breaks at different points throughout this 500-kilobase region, which contains a possible tumor suppressor gene called FHIT."

Glover credits Casper with the discovery that ATR is the key to damage control at fragile sites. When she started her study, however, Casper was more interested in a related protein called ATM, which recognizes a specific type of DNA damage in replicating chromosomes.

"ATM responds to DNA double-strand breaks by signaling cells to stop replicating until the damage is repaired," says Casper. "But when we studied cells without ATM, we found no difference in fragile site instability as compared to normal cells."

"It turns out there is a parallel pathway, controlled by the ATR gene, which recognizes DNA damage at fragile sites," Casper adds. "Instead of double-strand breaks, ATR recognizes stalled replication forks where DNA replication is blocked. For reasons we don’t understand, fragile sites seem to be difficult to copy. When replication starts to stall, ATR sends out a chemical signal telling the cell to shut down replication until it can fix the problem."

To find out what happens during DNA replication in the absence of ATR protein, Casper used three different techniques to inactivate or disable ATR expression in human cell cultures used in the U-M study. To put cells under stress, she treated the cell cultures with aphidicolin, a substance that makes it harder for cells to make new DNA. Casper discovered that fragile site breaks were 5- to 10-times more common in cell lines without ATR as compared to normal cell controls.

"If you complete the cell cycle without replicating the fragile site and the cell continues into metaphase, our hypothesis is that the cell goes into metaphase with a gap in the chromosome," says Glover. "That can lead to double-strand breaks, chromatid recombination and all sorts of things that aren’t supposed to occur."

Casper found that increasing the amount of aphidicolin in cell cultures without ATR produced more fragile site breaks. She emphasized, however, that future research will be necessary to know whether stressed cells in living organisms have more chromosomal breaks during DNA replication and what the effects of those breaks could be.

"ATR regulates the activity of several important proteins in the chain of signals that controls cell replication, " says Casper. "One of its primary targets is BRCA1. Mutations in the BRCA1 gene increase the risk of breast cancer. It is widely known that cells deficient in BRCA1 protein have a lot of chromosomal instability."

Glover has studied fragile sites for more than 20 years and was the first scientist to characterize the most common sites. He first noticed these sites on all chromosomes during his post-doctoral fellowship at the University of Hawaii, while studying how folic acid deficiency is responsible for the chromosomal break in a rare condition called Fragile X Syndrome. Males with this syndrome have profound mental retardation. Glover also has shown that cell cultures exposed to very high doses of caffeine have more fragile site breaks.

One of the most intriguing things about fragile sites, says Glover, is that they are found in humans, primates, mice and possibly even yeast. "These are regions of DNA that are prone to breakage and difficult to replicate, so why have they been conserved by evolution for millions of years? Evolution should have blocked them out long ago, unless there was a good reason to keep them. At this point, we can only guess at the reason."


The U-M research study was funded by the National Institutes of Health. Anne Casper is supported by a Predoctoral Fellowship from the National Science Foundation. Martin F. Arlt, Ph.D., a U-M post-doctoral fellow in human genetics, and Paul Nghiem, Ph.D., a Howard Hughes Medical Institute post-doctoral fellow at Harvard University and the Dana-Farber Cancer Institute, were collaborators on the study.




Sally Pobojewski | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>