Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Gene that Controls Learned Fear

13.12.2002


Researchers have discovered the first genetic component of a biochemical pathway in the brain that governs the indelible imprinting of fear-related experiences in memory.

The gene identified by researchers at the Howard Hughes Medical Institute at Columbia University encodes a protein that inhibits the action of the fear-learning circuitry in the brain. Understanding how this protein quells fear may lead to the design of new drugs to treat depression, panic and generalized anxiety disorders.

The findings were reported in the December 13, 2002 issue of the journal Cell, by a research team that included Howard Hughes Medical Institute (HHMI) investigators Eric Kandel at Columbia University and Catherine Dulac at Harvard University. Lead author of the paper was Gleb Shumyatsky, a postdoctoral fellow in Kandel’s laboratory at Columbia University. Other members of the research team are at the National Institutes of Health and Harvard Medical School.



According to Kandel, earlier studies indicated that a specific signaling pathway controls fear-related learning, which takes place in a region of the brain called the amygdala. "Given these preliminary analyses, we wanted to take a more systematic approach to obtain a genetic perspective on learned fear," said Kandel.

One of the keys to doing these genetic analyses, Kandel said, was the development of a technique for isolating and comparing the genes of individual cells, which was developed at Columbia by Dulac with HHMI investigator Richard Axel.

Shumyatsky applied that technique, called differential screening of single-cell cDNA libraries, to mouse cells to compare the genetic activity of cells from a region of the amygdala called the lateral nucleus, with cells from another region of the brain that is not known to be involved in learned fear. The comparison revealed two candidate genes for fear-related learning that are highly expressed in the amygdala.

The researchers decided to focus further study on one of the genes, Grp, which encodes a short protein called gastrin-releasing peptide (GRP), because they found that this protein has an unusual distribution in the brain and is known to serve as a neurotransmitter. Shumyatsky’s analysis revealed that the Grp gene was highly enriched in the lateral nucleus, and in other regions of the brain that feed auditory inputs into the amygdala.

"Gleb’s finding that this gene was active not only in the lateral nucleus but also in a number of regions that projected into the lateral nucleus was interesting because it suggested that a whole circuit was involved," said Kandel. Shumyatsky next showed that GRP is expressed by excitatory principal neurons and that its receptor, GRPR, is expressed by inhibitory interneurons. The researchers then undertook collaborative studies with co-author Vadim Bolshakov at Harvard Medical School to characterize cells in the amygdala that expressed receptors for GRP. Those studies in mouse brain slices revealed that GRP acts in the amygdala by exciting a population of inhibitory interneurons in the lateral nucleus that provide feedback and inhibit the principal neurons.

The researchers next explored whether eliminating GRP’s activity could affect the ability to learn fear by studying a strain of knockout mice that lacked the receptor for GRP in the brain.

In behavioral experiments, they first trained both the knockout mice and normal mice to associate an initially neutral tone with a subsequent unpleasant electric shock. As a result of the training, the mouse learns that the neutral tone now predicts danger. After the training, the researchers compared the degree to which the two strains of mice showed fear when exposed to the same tone alone — by measuring the duration of a characteristic freezing response that the animals exhibit when fearful.

"When we compared the mouse strains, we saw a powerful enhancement of learned fear in the knockout mice," said Kandel. Also, he said, the knockout mice showed an enhancement in the learning-related cellular process known as long-term potentiation.

"It is interesting that we saw no other disturbances in these mice," he said. "They showed no increased pain sensitivity; nor did they exhibit increased instinctive fear in other behavioral studies. So, their defect seemed to be quite specific for the learned aspect of fear," he said. Tests of instinctive fear included comparing how both normal and knockout mice behaved in mazes that exposed them to anxiety-provoking environments such as open or lighted areas.

"These findings reveal a biological basis for what had only been previously inferred from psychological studies — that instinctive fear, chronic anxiety, is different from acquired fear," said Kandel.

In additional behavioral studies, the researchers found that the normal and knockout mice did not differ in spatial learning abilities involving the hippocampus, but not the amygdala, thus genetically demonstrating that these two anatomical structures are different in their function.

According to Kandel, further understanding of the fear-learning pathway could have important implications for treating anxiety disorders. "Since GRP acts to dampen fear, it might be possible in principle to develop drugs that activate the peptide, representing a completely new approach to treating anxiety," he said. However, he emphasized, the discovery of the action of the Grp gene is only the beginning of a long research effort to reveal the other genes in the fear-learning pathway.

More broadly, said Kandel, the fear-learning pathway might provide an invaluable animal model for a range of mental illnesses. "Although one would ultimately like to develop mouse models for various mental illnesses such as schizophrenia and depression, this is very hard to do because we know very little about the biological foundations of most forms of mental illness," he said. "However, we do know something about the neuroanatomical substrates of anxiety states, including both chronic fear and acute fear. We know they are centered in the amygdala.

"And while I don’t want to overstate the case, in studies of fear learning we could well have an excellent beginning for animal models of a severe mental illness. We already knew quite a lot about the neural pathways in the brain that are involved in fear learning. And now, we have a way to understand the genetic and biochemical mechanisms underlying those pathways."

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>