Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists uncover new mechanism by which cells rid themselves of damaged proteins

13.12.2002


Scientists at UT Southwestern Medical Center at Dallas have identified a new and surprising mechanism by which a class of enzymes responsible for the breakdown of proteins operates.



The process of degrading proteins no longer needed by cells is essential in the normal growth, development and regulation of cells, and the study’s findings have implications for understanding diseases like Parkinson’s and several forms of cancer.

"Many diseases involve the inappropriate accumulation of unneeded or damaged proteins," said Dr. Philip Thomas, associate professor of physiology and the study’s senior author. "Cells normally utilize an enzyme called the proteasome to remove these proteins by cutting them into small pieces."


The researchers found that the proteasome independently degrades substrates (substances acted upon by an enzyme) involved in Parkinson’s disease and some types of cancer. The findings appear in this week’s online Web version of Science.

"For some time, people thought that the proteasome could not work by itself," said Dr. George DeMartino, professor of physiology and a study author. "The study showed that it has the capability of doing something by itself with known, important substrates."

These findings may have implications for development of future drugs to treat diseases like cancer. "The progression through the cell cycle is normally controlled by degrading certain proteins at certain times in the cell cycle," said DeMartino. "In cancer cells, that process goes faster, and it doesn’t turn off. If you can somehow inhibit proteasome function, you can prevent cells from going through the cell cycle and cell growth and, therefore, prevent cancer."

The proteasome, which is present in all higher cells, contains its active sites inside a cylinder-like shape with a gate that prevents the entry of normal cellular proteins, thereby protecting them from destruction. For years, scientists believed that proteasome only degraded proteins tagged by a "death marker" named polyubiquitin, which directed damaged proteins to a complex that opened the gate. The new findings reveal that some important substrates do not need to be marked with polyubiquitin, but can open the gate themselves, enter the active cylinder and be degraded.

The scientists conducted the research by performing biochemical assays using purified proteins involved in disease. Included were a-synuclein - a protein that is not normally degraded in Parkinson’s disease - and a cell-cycle regulator important to the progression of cancer. Accumulation of the degradation-resistant a-synuclein is thought to play a causative role in Parkinson’s disease.

Dr. Changwei Liu, postdoctoral research fellow in physiology and lead author of the study, said, "We found that the proteasome can cut in the middle of these substrates. This was totally unexpected. Interestingly, cutting a-synuclein in this manner produces fragments that are reminiscent of the products found in the pathological deposits in the brains of Parkinson’s patients."



Dr. Michael Corboy, postdoctoral physiology research fellow, also helped author the study, which was supported by grants from the Welch Foundation and the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Rachel Donihoo | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>