Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists uncover new mechanism by which cells rid themselves of damaged proteins

13.12.2002


Scientists at UT Southwestern Medical Center at Dallas have identified a new and surprising mechanism by which a class of enzymes responsible for the breakdown of proteins operates.



The process of degrading proteins no longer needed by cells is essential in the normal growth, development and regulation of cells, and the study’s findings have implications for understanding diseases like Parkinson’s and several forms of cancer.

"Many diseases involve the inappropriate accumulation of unneeded or damaged proteins," said Dr. Philip Thomas, associate professor of physiology and the study’s senior author. "Cells normally utilize an enzyme called the proteasome to remove these proteins by cutting them into small pieces."


The researchers found that the proteasome independently degrades substrates (substances acted upon by an enzyme) involved in Parkinson’s disease and some types of cancer. The findings appear in this week’s online Web version of Science.

"For some time, people thought that the proteasome could not work by itself," said Dr. George DeMartino, professor of physiology and a study author. "The study showed that it has the capability of doing something by itself with known, important substrates."

These findings may have implications for development of future drugs to treat diseases like cancer. "The progression through the cell cycle is normally controlled by degrading certain proteins at certain times in the cell cycle," said DeMartino. "In cancer cells, that process goes faster, and it doesn’t turn off. If you can somehow inhibit proteasome function, you can prevent cells from going through the cell cycle and cell growth and, therefore, prevent cancer."

The proteasome, which is present in all higher cells, contains its active sites inside a cylinder-like shape with a gate that prevents the entry of normal cellular proteins, thereby protecting them from destruction. For years, scientists believed that proteasome only degraded proteins tagged by a "death marker" named polyubiquitin, which directed damaged proteins to a complex that opened the gate. The new findings reveal that some important substrates do not need to be marked with polyubiquitin, but can open the gate themselves, enter the active cylinder and be degraded.

The scientists conducted the research by performing biochemical assays using purified proteins involved in disease. Included were a-synuclein - a protein that is not normally degraded in Parkinson’s disease - and a cell-cycle regulator important to the progression of cancer. Accumulation of the degradation-resistant a-synuclein is thought to play a causative role in Parkinson’s disease.

Dr. Changwei Liu, postdoctoral research fellow in physiology and lead author of the study, said, "We found that the proteasome can cut in the middle of these substrates. This was totally unexpected. Interestingly, cutting a-synuclein in this manner produces fragments that are reminiscent of the products found in the pathological deposits in the brains of Parkinson’s patients."



Dr. Michael Corboy, postdoctoral physiology research fellow, also helped author the study, which was supported by grants from the Welch Foundation and the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Rachel Donihoo | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews
http://www.swmed.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>