Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists uncover new mechanism by which cells rid themselves of damaged proteins

13.12.2002


Scientists at UT Southwestern Medical Center at Dallas have identified a new and surprising mechanism by which a class of enzymes responsible for the breakdown of proteins operates.



The process of degrading proteins no longer needed by cells is essential in the normal growth, development and regulation of cells, and the study’s findings have implications for understanding diseases like Parkinson’s and several forms of cancer.

"Many diseases involve the inappropriate accumulation of unneeded or damaged proteins," said Dr. Philip Thomas, associate professor of physiology and the study’s senior author. "Cells normally utilize an enzyme called the proteasome to remove these proteins by cutting them into small pieces."


The researchers found that the proteasome independently degrades substrates (substances acted upon by an enzyme) involved in Parkinson’s disease and some types of cancer. The findings appear in this week’s online Web version of Science.

"For some time, people thought that the proteasome could not work by itself," said Dr. George DeMartino, professor of physiology and a study author. "The study showed that it has the capability of doing something by itself with known, important substrates."

These findings may have implications for development of future drugs to treat diseases like cancer. "The progression through the cell cycle is normally controlled by degrading certain proteins at certain times in the cell cycle," said DeMartino. "In cancer cells, that process goes faster, and it doesn’t turn off. If you can somehow inhibit proteasome function, you can prevent cells from going through the cell cycle and cell growth and, therefore, prevent cancer."

The proteasome, which is present in all higher cells, contains its active sites inside a cylinder-like shape with a gate that prevents the entry of normal cellular proteins, thereby protecting them from destruction. For years, scientists believed that proteasome only degraded proteins tagged by a "death marker" named polyubiquitin, which directed damaged proteins to a complex that opened the gate. The new findings reveal that some important substrates do not need to be marked with polyubiquitin, but can open the gate themselves, enter the active cylinder and be degraded.

The scientists conducted the research by performing biochemical assays using purified proteins involved in disease. Included were a-synuclein - a protein that is not normally degraded in Parkinson’s disease - and a cell-cycle regulator important to the progression of cancer. Accumulation of the degradation-resistant a-synuclein is thought to play a causative role in Parkinson’s disease.

Dr. Changwei Liu, postdoctoral research fellow in physiology and lead author of the study, said, "We found that the proteasome can cut in the middle of these substrates. This was totally unexpected. Interestingly, cutting a-synuclein in this manner produces fragments that are reminiscent of the products found in the pathological deposits in the brains of Parkinson’s patients."



Dr. Michael Corboy, postdoctoral physiology research fellow, also helped author the study, which was supported by grants from the Welch Foundation and the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Rachel Donihoo | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>