Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists uncover new mechanism by which cells rid themselves of damaged proteins

13.12.2002


Scientists at UT Southwestern Medical Center at Dallas have identified a new and surprising mechanism by which a class of enzymes responsible for the breakdown of proteins operates.



The process of degrading proteins no longer needed by cells is essential in the normal growth, development and regulation of cells, and the study’s findings have implications for understanding diseases like Parkinson’s and several forms of cancer.

"Many diseases involve the inappropriate accumulation of unneeded or damaged proteins," said Dr. Philip Thomas, associate professor of physiology and the study’s senior author. "Cells normally utilize an enzyme called the proteasome to remove these proteins by cutting them into small pieces."


The researchers found that the proteasome independently degrades substrates (substances acted upon by an enzyme) involved in Parkinson’s disease and some types of cancer. The findings appear in this week’s online Web version of Science.

"For some time, people thought that the proteasome could not work by itself," said Dr. George DeMartino, professor of physiology and a study author. "The study showed that it has the capability of doing something by itself with known, important substrates."

These findings may have implications for development of future drugs to treat diseases like cancer. "The progression through the cell cycle is normally controlled by degrading certain proteins at certain times in the cell cycle," said DeMartino. "In cancer cells, that process goes faster, and it doesn’t turn off. If you can somehow inhibit proteasome function, you can prevent cells from going through the cell cycle and cell growth and, therefore, prevent cancer."

The proteasome, which is present in all higher cells, contains its active sites inside a cylinder-like shape with a gate that prevents the entry of normal cellular proteins, thereby protecting them from destruction. For years, scientists believed that proteasome only degraded proteins tagged by a "death marker" named polyubiquitin, which directed damaged proteins to a complex that opened the gate. The new findings reveal that some important substrates do not need to be marked with polyubiquitin, but can open the gate themselves, enter the active cylinder and be degraded.

The scientists conducted the research by performing biochemical assays using purified proteins involved in disease. Included were a-synuclein - a protein that is not normally degraded in Parkinson’s disease - and a cell-cycle regulator important to the progression of cancer. Accumulation of the degradation-resistant a-synuclein is thought to play a causative role in Parkinson’s disease.

Dr. Changwei Liu, postdoctoral research fellow in physiology and lead author of the study, said, "We found that the proteasome can cut in the middle of these substrates. This was totally unexpected. Interestingly, cutting a-synuclein in this manner produces fragments that are reminiscent of the products found in the pathological deposits in the brains of Parkinson’s patients."



Dr. Michael Corboy, postdoctoral physiology research fellow, also helped author the study, which was supported by grants from the Welch Foundation and the National Institutes of Health.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Rachel Donihoo | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>