Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientists unlock secret of calcium waves in cells

12.12.2002


Key step in process of developing targeted therapeutics to combat epilepsy



Scientists from Toronto’s Princess Margaret Hospital are able to depict for the first time how an important molecule called IP3 and its receptor interact to control calcium levels in cells, a process that is vital to normal brain function.

The study is published in this week’s edition of the international scientific journal Nature, and is a collaboration between scientists at Princess Margaret Hospital’s research arm, Ontario Cancer Institute (OCI), the University of Toronto, and the University of Tokyo.


The IP3 molecule is one of a dozen molecules within cells that act as messengers, translating chemical stimulus outside of the cell into a physiological response-for instance, an increase in glutamate triggers memory. The translation by the IP3 molecule is accomplished by setting waves of different calcium levels within the cell, with the receptor regulating the ebb and flow of these calcium waves. The process is critical to normal brain function, playing an important role in memory and learning. It is also believed to play a key role in epilepsy, since mice lacking IP3 receptors suffer epileptic seizures and improper brain function.

The scientists examined the atomic structure of the IP3 molecule and its receptor, and now know exactly how they bind together. Having an accurate 3D picture of the molecule-receptor interaction may aid in the design of drugs that either enhance or block the process of setting calcium levels in cells.

"Imagine the receptor as a doorway through which calcium passes in order for the cells to react," said Ivan Bosanac, lead author of the study, researcher at OCI, and Ph.D. candidate at the University of Toronto. "What we’ve done is describe the doorway’s keyhole and how the IP3 molecule acts as the key to unlock it."

"This finding represents an important milestone in developing potential drug therapies that could one day combat diseases such as epilepsy," said Dr. Mitsu Ikura, Senior Scientist with OCI, and Professor of Medical Biophysics at University of Toronto. "Although development of such therapies is years away and will require much more research, understanding how the molecule IP3 binds with its receptor is critical to regulating calcium levels in cells and ensuring normal brain function."

The research was supported by a fellowship from the Canadian Institutes of Health and Research, a grant from the Howard Hughes Medical Institute and by a grant from the Institute of Physical and Chemical Research (RIKEN), in Japan. Dr. Ikura is a Canadian Institutes of Health Research Investigator. His laboratory at Princess Margaret Hospital is also supported by the George and Helen Vari Foundation.

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are teaching hospitals affiliated with the University of Toronto.

Vince Rice | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>