Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientists unlock secret of calcium waves in cells

12.12.2002


Key step in process of developing targeted therapeutics to combat epilepsy



Scientists from Toronto’s Princess Margaret Hospital are able to depict for the first time how an important molecule called IP3 and its receptor interact to control calcium levels in cells, a process that is vital to normal brain function.

The study is published in this week’s edition of the international scientific journal Nature, and is a collaboration between scientists at Princess Margaret Hospital’s research arm, Ontario Cancer Institute (OCI), the University of Toronto, and the University of Tokyo.


The IP3 molecule is one of a dozen molecules within cells that act as messengers, translating chemical stimulus outside of the cell into a physiological response-for instance, an increase in glutamate triggers memory. The translation by the IP3 molecule is accomplished by setting waves of different calcium levels within the cell, with the receptor regulating the ebb and flow of these calcium waves. The process is critical to normal brain function, playing an important role in memory and learning. It is also believed to play a key role in epilepsy, since mice lacking IP3 receptors suffer epileptic seizures and improper brain function.

The scientists examined the atomic structure of the IP3 molecule and its receptor, and now know exactly how they bind together. Having an accurate 3D picture of the molecule-receptor interaction may aid in the design of drugs that either enhance or block the process of setting calcium levels in cells.

"Imagine the receptor as a doorway through which calcium passes in order for the cells to react," said Ivan Bosanac, lead author of the study, researcher at OCI, and Ph.D. candidate at the University of Toronto. "What we’ve done is describe the doorway’s keyhole and how the IP3 molecule acts as the key to unlock it."

"This finding represents an important milestone in developing potential drug therapies that could one day combat diseases such as epilepsy," said Dr. Mitsu Ikura, Senior Scientist with OCI, and Professor of Medical Biophysics at University of Toronto. "Although development of such therapies is years away and will require much more research, understanding how the molecule IP3 binds with its receptor is critical to regulating calcium levels in cells and ensuring normal brain function."

The research was supported by a fellowship from the Canadian Institutes of Health and Research, a grant from the Howard Hughes Medical Institute and by a grant from the Institute of Physical and Chemical Research (RIKEN), in Japan. Dr. Ikura is a Canadian Institutes of Health Research Investigator. His laboratory at Princess Margaret Hospital is also supported by the George and Helen Vari Foundation.

Princess Margaret Hospital and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are teaching hospitals affiliated with the University of Toronto.

Vince Rice | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>