Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of genes causing defects in vitamin B12 metabolism

10.12.2002


Investigators at the University of Calgary and McGill University have identified genes that underlie two severe diseases of vitamin B12 metabolism. The two diseases, known as the cblA and cblB forms of methylmalonic aciduria, may produce brain damage, mental retardation and even death if not detected in infancy or early childhood.



Melissa Dobson, a graduate student at the University of Calgary working with Roy Gravel PhD in the Department of Biochemistry and Molecular Biology, is lead author of two papers reporting the identification of the two genes. The genes were first identified in bacteria and then traced to their human counterparts. She credits the human genome project with her breakthrough. "We can now compare human and bacterial DNA sequences to find human genes," states Dobson. "This was made possible by the availability of the sequence of the complete human genome."

To prove whether she and colleague Daniel Leclerc, PhD, had identified the correct genes, she approached her McGill collaborators, Dr. David Rosenblatt and Dr. Thomas Hudson, for help in screening patients. The McGill University Health Centre (MUHC) has a world-renowned diagnostic facility and cell bank for patients with genetic diseases involving vitamin B12. Using Genome Quebec’s MUHC -based sequencing centre, Dobson and her colleagues confirmed the presence of mutations in DNA from patients with the two diseases.


"We have identified two different genes that are critical to the processing of vitamin B12 by finding mutations in patients who have particular forms of methylmalonic aciduria," according to Dobson. Methylmalonic acid is a chemical intermediate in the breakdown of proteins and other substances. It accumulates in the body and is excreted in large amounts in the urine because the blocks in the processing of vitamin B12 prevent its metabolism.

Identifying the genes that cause cblA and cblB represents a landmark breakthrough for patients suffering from both forms of the disease. "The discovery will make possible DNA testing for carriers and early prenatal diagnosis. This is important because treatment can be started during pregnancy," says Rosenblatt. Fortunately, many patients can be treated with high dose vitamin B12 supplements and a diet that is low in protein.

"This research will lead to better understanding of the disorder and provides hope to those families living with this disease," adds Kathy Stagni, Executive Director of the Organic Acidemia Association, a nonprofit organization that supports families with inherited metabolic disorders.

This research is published in the November 26 issue of the Proceedings of the National Academy of Sciences (USA) and the December 15 issue of Human Molecular Genetics.

This study was supported by the Canadian Institutes of Health Research (CIHR), the National Institutes of Health (USA), and the March of Dimes Birth Defects Foundation.

The scientists are members of the Medical Genetics Group of the CIHR and the Canadian Genetic Diseases Network. Based at McGill, the Medical Genetics Group has existed since 1972, a record for sustained federal funding for such research.

Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>