Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of genes causing defects in vitamin B12 metabolism

10.12.2002


Investigators at the University of Calgary and McGill University have identified genes that underlie two severe diseases of vitamin B12 metabolism. The two diseases, known as the cblA and cblB forms of methylmalonic aciduria, may produce brain damage, mental retardation and even death if not detected in infancy or early childhood.



Melissa Dobson, a graduate student at the University of Calgary working with Roy Gravel PhD in the Department of Biochemistry and Molecular Biology, is lead author of two papers reporting the identification of the two genes. The genes were first identified in bacteria and then traced to their human counterparts. She credits the human genome project with her breakthrough. "We can now compare human and bacterial DNA sequences to find human genes," states Dobson. "This was made possible by the availability of the sequence of the complete human genome."

To prove whether she and colleague Daniel Leclerc, PhD, had identified the correct genes, she approached her McGill collaborators, Dr. David Rosenblatt and Dr. Thomas Hudson, for help in screening patients. The McGill University Health Centre (MUHC) has a world-renowned diagnostic facility and cell bank for patients with genetic diseases involving vitamin B12. Using Genome Quebec’s MUHC -based sequencing centre, Dobson and her colleagues confirmed the presence of mutations in DNA from patients with the two diseases.


"We have identified two different genes that are critical to the processing of vitamin B12 by finding mutations in patients who have particular forms of methylmalonic aciduria," according to Dobson. Methylmalonic acid is a chemical intermediate in the breakdown of proteins and other substances. It accumulates in the body and is excreted in large amounts in the urine because the blocks in the processing of vitamin B12 prevent its metabolism.

Identifying the genes that cause cblA and cblB represents a landmark breakthrough for patients suffering from both forms of the disease. "The discovery will make possible DNA testing for carriers and early prenatal diagnosis. This is important because treatment can be started during pregnancy," says Rosenblatt. Fortunately, many patients can be treated with high dose vitamin B12 supplements and a diet that is low in protein.

"This research will lead to better understanding of the disorder and provides hope to those families living with this disease," adds Kathy Stagni, Executive Director of the Organic Acidemia Association, a nonprofit organization that supports families with inherited metabolic disorders.

This research is published in the November 26 issue of the Proceedings of the National Academy of Sciences (USA) and the December 15 issue of Human Molecular Genetics.

This study was supported by the Canadian Institutes of Health Research (CIHR), the National Institutes of Health (USA), and the March of Dimes Birth Defects Foundation.

The scientists are members of the Medical Genetics Group of the CIHR and the Canadian Genetic Diseases Network. Based at McGill, the Medical Genetics Group has existed since 1972, a record for sustained federal funding for such research.

Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>