Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of genes causing defects in vitamin B12 metabolism

10.12.2002


Investigators at the University of Calgary and McGill University have identified genes that underlie two severe diseases of vitamin B12 metabolism. The two diseases, known as the cblA and cblB forms of methylmalonic aciduria, may produce brain damage, mental retardation and even death if not detected in infancy or early childhood.



Melissa Dobson, a graduate student at the University of Calgary working with Roy Gravel PhD in the Department of Biochemistry and Molecular Biology, is lead author of two papers reporting the identification of the two genes. The genes were first identified in bacteria and then traced to their human counterparts. She credits the human genome project with her breakthrough. "We can now compare human and bacterial DNA sequences to find human genes," states Dobson. "This was made possible by the availability of the sequence of the complete human genome."

To prove whether she and colleague Daniel Leclerc, PhD, had identified the correct genes, she approached her McGill collaborators, Dr. David Rosenblatt and Dr. Thomas Hudson, for help in screening patients. The McGill University Health Centre (MUHC) has a world-renowned diagnostic facility and cell bank for patients with genetic diseases involving vitamin B12. Using Genome Quebec’s MUHC -based sequencing centre, Dobson and her colleagues confirmed the presence of mutations in DNA from patients with the two diseases.


"We have identified two different genes that are critical to the processing of vitamin B12 by finding mutations in patients who have particular forms of methylmalonic aciduria," according to Dobson. Methylmalonic acid is a chemical intermediate in the breakdown of proteins and other substances. It accumulates in the body and is excreted in large amounts in the urine because the blocks in the processing of vitamin B12 prevent its metabolism.

Identifying the genes that cause cblA and cblB represents a landmark breakthrough for patients suffering from both forms of the disease. "The discovery will make possible DNA testing for carriers and early prenatal diagnosis. This is important because treatment can be started during pregnancy," says Rosenblatt. Fortunately, many patients can be treated with high dose vitamin B12 supplements and a diet that is low in protein.

"This research will lead to better understanding of the disorder and provides hope to those families living with this disease," adds Kathy Stagni, Executive Director of the Organic Acidemia Association, a nonprofit organization that supports families with inherited metabolic disorders.

This research is published in the November 26 issue of the Proceedings of the National Academy of Sciences (USA) and the December 15 issue of Human Molecular Genetics.

This study was supported by the Canadian Institutes of Health Research (CIHR), the National Institutes of Health (USA), and the March of Dimes Birth Defects Foundation.

The scientists are members of the Medical Genetics Group of the CIHR and the Canadian Genetic Diseases Network. Based at McGill, the Medical Genetics Group has existed since 1972, a record for sustained federal funding for such research.

Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>