Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On chip separation: large molecules pass the speed camera first


What molecule or particle passes the finishline first? A good way to split a fluid sample into its separate parts is: organize a contest in a micro-channel. The largest parts will pass the optical detector first, the smaller ones follow at short distance. This principle of ‘hydrodynamic chromatography’ is now also possible on a chip. ‘On-chip’ separation is faster, needs tiny samples and uses minimum of harmful solvents. Marko Blom developed this separation chip within the MESA+ research institute of the University of Twente. He presents his PhD-work on December 13, 2002.

The separation channel Blom has developed is not deeper than one micron, it is one millimeter in width and some six to eight centimeters long. It has been fabricated in silicon or silicate glass. Thanks to this compact geometry, the separation is fast: bigger molecules move faster, smaller ones follow. A light-sensitive cell detects the fastest ones first. Colour characteristics provide additional information about the particle or molecule: therefore at the start of the ‘race’, fluorescent markers can be added to the fluid, for example.

Hydrodynamic chromatography (HDC) is a well-known separation technique for particles and large molecules, but the resolution of current methods is far from optimal. HDC is usually applied in a fluid column, filled with non-porous particles that create, with the tiny spaces inbetween, the same effect as a narrow channel. On-chip separation results in a better resolution because the geometry is better defined than the pores between the particles in a conventional column, that are divided in a rather arbitrary way. Within just a few minutes Blom can, for example, fully separate little polystyrene balls. The new chip is particularly interesting for analysis of large molecules like polymers. For biomolecules, it works as well: for example analysis of DNA-components.

A microsystem like this new separation chip has more advantages than the ones mentioned above: it is possible to add all kinds of functionality. It is not just the separation itself that takes place on-chip, but also detection and fluid preparation can be done. Blom has built a with a viscosity sensor: a small bridge over the channel slightly disturbs the fluid. The difference in pressure can be detected optically. The system is a new lab-on-chip, systems that are for large amounts of analyses at the same time.

Blom’s research is part of the research orientation MicroChemical Systems, within the MESA+ research institute of the University of Twente in The Netherlands ( It has been financially supported by the Dutch Technology Foundation STW ( Blom has done his research in close cooperation with the Polymer Analysis group of the University of Amsterdam.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>