Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On chip separation: large molecules pass the speed camera first

10.12.2002


What molecule or particle passes the finishline first? A good way to split a fluid sample into its separate parts is: organize a contest in a micro-channel. The largest parts will pass the optical detector first, the smaller ones follow at short distance. This principle of ‘hydrodynamic chromatography’ is now also possible on a chip. ‘On-chip’ separation is faster, needs tiny samples and uses minimum of harmful solvents. Marko Blom developed this separation chip within the MESA+ research institute of the University of Twente. He presents his PhD-work on December 13, 2002.



The separation channel Blom has developed is not deeper than one micron, it is one millimeter in width and some six to eight centimeters long. It has been fabricated in silicon or silicate glass. Thanks to this compact geometry, the separation is fast: bigger molecules move faster, smaller ones follow. A light-sensitive cell detects the fastest ones first. Colour characteristics provide additional information about the particle or molecule: therefore at the start of the ‘race’, fluorescent markers can be added to the fluid, for example.

Hydrodynamic chromatography (HDC) is a well-known separation technique for particles and large molecules, but the resolution of current methods is far from optimal. HDC is usually applied in a fluid column, filled with non-porous particles that create, with the tiny spaces inbetween, the same effect as a narrow channel. On-chip separation results in a better resolution because the geometry is better defined than the pores between the particles in a conventional column, that are divided in a rather arbitrary way. Within just a few minutes Blom can, for example, fully separate little polystyrene balls. The new chip is particularly interesting for analysis of large molecules like polymers. For biomolecules, it works as well: for example analysis of DNA-components.


Lab-on-chip
A microsystem like this new separation chip has more advantages than the ones mentioned above: it is possible to add all kinds of functionality. It is not just the separation itself that takes place on-chip, but also detection and fluid preparation can be done. Blom has built a with a viscosity sensor: a small bridge over the channel slightly disturbs the fluid. The difference in pressure can be detected optically. The system is a new lab-on-chip, systems that are for large amounts of analyses at the same time.

Blom’s research is part of the research orientation MicroChemical Systems, within the MESA+ research institute of the University of Twente in The Netherlands (www.mesaplus.utwente.nl). It has been financially supported by the Dutch Technology Foundation STW (www.stw.nl). Blom has done his research in close cooperation with the Polymer Analysis group of the University of Amsterdam.

Wiebe van der Veen | alfa

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>