Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass scientist identifies gene that governs obesity, physical activity, sex behaviors in mice

10.12.2002


Findings based on ’knock-out’ mice detailed in the journal Physiology and Behavior



A team led by University of Massachusetts Amherst researcher Deborah J. Good has identified a gene that appears to play a role in obesity, physical activity, and sex behaviors in mice. Good works with so-called "knock-out" mice, which have a specific gene deleted. Scientists then monitor the animals for changes in their physiology and behavior, in an effort to determine the gene’s role. Her findings are detailed in the current issue of the journal Physiology and Behavior. The project is funded with a four-year, $1 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, and a two-year, $70,000 grant from the National Institute of Child Health and Human Development, both of the National Institutes of Health.

Good is studying the mechanisms in the brain and nervous system that regulate appetite and body weight. Although more than 20 genes have been implicated in the regulation of body weight, the mechanisms through which these genes work remain unclear, she says. Recent evidence by Good suggests that a gene called Nhlh2 plays a key role in the regulation of genes controlling body weight, as well as physical activity levels and mating behavior.


"The knock-out mice can weigh up to 100 grams or more, while most normal mice weigh 25 to 30 grams. Thus, the knock-outs are the equivalent of a 450-pound person," Good says. Two issues contribute to their obesity: the all-too-familiar diet and exercise factors. The mice eat far past what should be the point of satiety, and show a marked disinterest in running on an exercise wheel. "Most mice love to run on a little exercise wheel when you put it in their cage," notes Good, "but not these guys. They run less than other mice before they become obese. Once they do put the extra weight on, their decreased physical activity contributes to their weight gain even more than their food intake."

But these mice can legitimately blame their weight on their genes – or rather, their lack of the Nhlh2 gene. "The gene is responsible for giving them the message, ’You’re full, so stop eating,’ or ’You need to increase your activity, so get some exercise.’" Without Nhlh2, the message is sent but can’t be received on a molecular level, so their body weight continues to increase, Good explains. "It’s as if someone is sending you e-mail, but you’re not reading the message. The message has been sent, but it’s not useful."

"There are humans who have this mutation," notes Good. "If we understand the molecular mechanisms that deal with obesity, perhaps we’ll be able to develop pharmaceuticals for people whose enzyme activity is offset." She also notes that humans can be coached to increase their exercise levels and lower their food intake.

In addition, the gene deletion appears to affect sex behaviors. The knock-out mice have a smaller genital size and lower sperm counts than typical mice. In addition, they show disinterest in mating when they share a cage with a receptive female. (They are able to produce offspring through in vitro methods.) Good cautions that the findings may not be analogous in human beings, in terms of infertility. "We don’t know what would happen in humans," Good says. "There might be fertility problems, but human sex behavior is greatly affected by sociological and cultural expectations that certainly aren’t a factor among mice."

In a related project, Good is studying the molecular control of male reproduction. Although more than 16 specialized proteins are implicated in controlling fertility, the molecular mechanisms of reproduction remain unclear, Good says. She and her team are working toward understanding the molecular control of reproduction and fertility by a specific gene known as Nhlh2.


Note: Deborah Good can be reached at 413/545-5560 or goodd@vasci.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>