Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UMass scientist identifies gene that governs obesity, physical activity, sex behaviors in mice


Findings based on ’knock-out’ mice detailed in the journal Physiology and Behavior

A team led by University of Massachusetts Amherst researcher Deborah J. Good has identified a gene that appears to play a role in obesity, physical activity, and sex behaviors in mice. Good works with so-called "knock-out" mice, which have a specific gene deleted. Scientists then monitor the animals for changes in their physiology and behavior, in an effort to determine the gene’s role. Her findings are detailed in the current issue of the journal Physiology and Behavior. The project is funded with a four-year, $1 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, and a two-year, $70,000 grant from the National Institute of Child Health and Human Development, both of the National Institutes of Health.

Good is studying the mechanisms in the brain and nervous system that regulate appetite and body weight. Although more than 20 genes have been implicated in the regulation of body weight, the mechanisms through which these genes work remain unclear, she says. Recent evidence by Good suggests that a gene called Nhlh2 plays a key role in the regulation of genes controlling body weight, as well as physical activity levels and mating behavior.

"The knock-out mice can weigh up to 100 grams or more, while most normal mice weigh 25 to 30 grams. Thus, the knock-outs are the equivalent of a 450-pound person," Good says. Two issues contribute to their obesity: the all-too-familiar diet and exercise factors. The mice eat far past what should be the point of satiety, and show a marked disinterest in running on an exercise wheel. "Most mice love to run on a little exercise wheel when you put it in their cage," notes Good, "but not these guys. They run less than other mice before they become obese. Once they do put the extra weight on, their decreased physical activity contributes to their weight gain even more than their food intake."

But these mice can legitimately blame their weight on their genes – or rather, their lack of the Nhlh2 gene. "The gene is responsible for giving them the message, ’You’re full, so stop eating,’ or ’You need to increase your activity, so get some exercise.’" Without Nhlh2, the message is sent but can’t be received on a molecular level, so their body weight continues to increase, Good explains. "It’s as if someone is sending you e-mail, but you’re not reading the message. The message has been sent, but it’s not useful."

"There are humans who have this mutation," notes Good. "If we understand the molecular mechanisms that deal with obesity, perhaps we’ll be able to develop pharmaceuticals for people whose enzyme activity is offset." She also notes that humans can be coached to increase their exercise levels and lower their food intake.

In addition, the gene deletion appears to affect sex behaviors. The knock-out mice have a smaller genital size and lower sperm counts than typical mice. In addition, they show disinterest in mating when they share a cage with a receptive female. (They are able to produce offspring through in vitro methods.) Good cautions that the findings may not be analogous in human beings, in terms of infertility. "We don’t know what would happen in humans," Good says. "There might be fertility problems, but human sex behavior is greatly affected by sociological and cultural expectations that certainly aren’t a factor among mice."

In a related project, Good is studying the molecular control of male reproduction. Although more than 16 specialized proteins are implicated in controlling fertility, the molecular mechanisms of reproduction remain unclear, Good says. She and her team are working toward understanding the molecular control of reproduction and fertility by a specific gene known as Nhlh2.

Note: Deborah Good can be reached at 413/545-5560 or

Elizabeth Luciano | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>