Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover gene ’signature’ for tumor’s tendency to spread


Researchers at Dana-Farber Cancer Institute and the Whitehead Institute have discovered a pattern of genetic activity in several types of primary tumors that appears to predict the likelihood that they will spread, or metastasize, to other parts of the body. If larger studies support these findings, this early indicator of life-threatening cancer spread might lead to a clinical test that would help determine appropriate treatment.

The study will be published by Nature Genetics on its web site on Dec. 9.
Most cancer deaths are caused not by the original or primary tumor but by the metastasizing of tumor cells to other organs. Until now, cancer specialists have viewed the development of metastasis as an essentially random and unpredictable event.

But that notion is thrown into question with the new finding of a genetic "signature" – a certain pattern of activity in a handful of genes – in some solid tumors that appears to preordain them to spreading dangerously. This signature is present in the early stages of the cancer, well before there is any evidence of metastasis, say the researchers.

"These results strongly support the idea that some primary tumors are pre-configured to metastasize, and that this propensity is detectable at the time of initial diagnosis," says Sridhar Ramaswamy, MD, a researcher at Dana-Farber.

Though metastasis is a common and feared event in cancer patients, what triggers it is poorly understood. Cancer cells must undergo a series of changes to become metastatic: they have to acquire the ability to grow while unattached to any tissue, they need to bore through vessel walls to reach the bloodstream or lymphatic system, and they must develop a new blood supply in order to grow. These events are under the control of different genes.

According to the traditional view, a tumor becomes metastatic more or less by chance as a result of a very few maverick cells developing the ability to spread. "It was thought that there was a randomness to it, as new mutations would be constantly arising and some would confer metastatic potential on the tumor," says Ramaswamy.

By contrast, the researchers say their discovery reveals that the tumor is "encoded" with metastatic potential from early on by a certain group of genes, and that this same group is found in a variety of tumor types.

Ramaswamy and his colleagues compared genetic patterns in samples of primary tumors and samples of metastatic cancers. They were seeking genetic differences that might explain why primary cancers stay put while metastatic clumps of cells break off and migrate through the body.

The scientists analyzed the genetic profiles of 64 primary tumors (adenocarcinomas) and 12 samples of cancers that metastasized from other adenocarcinomas. This analysis revealed a set of 128 genes whose expression pattern differed between the primary tumors and the metastases. The scientists were puzzled by instances in which the 128-gene signature associated with the metastatic cancers was also found in some primary tumors. They concluded, though, that the gene expression program of metastasis may already be present in the bulk of some primary tumors at the time of diagnosis.

Further support for this idea came from analysis of samples from 62 lung cancers, which found the metastasis gene signature in many of them. Next, they hypothesized that lung cancer patients whose primary tumors contained the metastatic signature would do more poorly (would survive a shorter time) than those whose tumors lacked the signature. They found that this was the case.

Finally, the scientists looked in the data for a smaller set of genes that could distinguish between primary and metastatic cancer samples. They found a group of 17 genes whose activity pattern could make the distinction, and they tested it in breast cancers, prostate cancers and even in brain tumors called medulloblastomas.

The researchers were surprised to find the same genetic signature associated with metastasis in several different tumor types. "We had no reason to believe it was this broadly applicable,’’ Ramaswamy says, but noted the signature was not evident in lymphoma, a blood cancer that is biologically different from solid tumors.

Further work in larger numbers of tumors is underway as the scientists try to validate the power of the signatures – a necessary step toward a clinical test. Such a test could make a critical difference in treatment of some tumors. For example, up to 30 percent of women with small primary breast cancers have undetectable "micrometastases" that gives them a poorer prognosis. A genetic test that could identify the metastatic potential in those early breast cancers after they’re removed could be of significant benefit in designing treatment.

Previous work with genetic profiles has shown that they can aid classification of hard-to-identify cancers, and can in some cases predict whether a tumor will respond well or poorly to treatment. Together with these discoveries, the new findings "support the emerging notion that the clinical outcome of cancer patients can be predicted using the gene expression profiles of primary tumors at diagnosis," the authors wrote.

Bill Schaller | Nature Genetics
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>