Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It May Take A Mouse to Understand The Behavior of "Jumping Genes"

03.12.2002


Mouse Model May Also Aid In Discovery of Gene Function



Researchers at the University of Pennsylvania School of Medicine have bred a mouse to model human L1 retrotransposons, the so-called "jumping genes." Retrotransposons are small stretches of DNA that are copied from one location in the genome and inserted elsewhere, typically during the genesis of sperm and egg cells. The L1 variety of retrotransposons, in particular, are responsible for about one third of the human genome.

The mouse model of L1 retrotransposition is expected to increase our understanding of the nature of jumping genes and their implication in disease. According to the Penn researchers, the mouse model may also prove to be a useful tool for studying how a gene functions by knocking it out through L1 insertion. Their report is in the December issue of Nature Genetics and currently available online (see below for URL).


"There are about a half million L1 sequences in the human genome, of which 80 to 100 remain an active source of mutation," said Haig H. Kazazian, Jr., MD, Chair of Penn’s Department of Genetics and senior author in the study. "This animal model will help us better understand how this happens, as well as provide a useful tool for discovering the function of known genes."

In humans, retrotransposons cause mutations in germ line cells, such as sperm, which continually divide and multiply. Like an errant bit of computer code that gets reproduced and spread online, retrotransposons are adept at being copied from one location and placed elsewhere in the chromosomes. When retrotransposons are inserted into important genes, they can cause disease, such as hemophilia and muscular dystrophy. On the other hand, retrotransposons have been around for 500 to 600 million years, and have contributed a lot to evolutionary change.

"In the grand scheme of evolution, retrotransposons have behaved like fickle gods, arbitrarily wreaking havoc in some and benefiting others," said Kazazian. "Retrotransposons can cause new genes to emerge that may benefit an organism - or they can kill by knocking out important genes. Overall, however, it seems that they are neutral and add to the apparent sloppiness of the genome."

For some time, researchers have been trying to understand how retrotransposons affect the genome and, in addition, what science may learn from the techniques they employ. According to Kazazian and his colleagues, the mouse model displays high-frequency chromosome to chromosome retrotransposition of human L1s, which behave in exactly the same way as they do in humans. While the current tissue culture model works well, it does not mimic the way retrotransposons jump in chromosomes.

The researchers believe that by understanding the mechanics of retrotransposition, they might be able to use similar techniques for genetic therapies in humans. They also hope to learn more about the basic mysteries behind retrotransposition, such as why L1 retrotransposons only seem to effect the germ line and not any other type of cell in the body.

As science refines the content of the mouse genome database, Kazazian foresees that this model will also be useful for determining the function of different genes. As new genes are identified, their purpose can be resolved by using retrotransposons to knock them out of commission. "Such knowledge has direct impact in humans," said Kazazian, "Information important to determining the nature of human diseases and developing new therapeutics can be extrapolated from our knowledge of the mouse genome."

Funding for this research was provided by grants from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>