Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It May Take A Mouse to Understand The Behavior of "Jumping Genes"

03.12.2002


Mouse Model May Also Aid In Discovery of Gene Function



Researchers at the University of Pennsylvania School of Medicine have bred a mouse to model human L1 retrotransposons, the so-called "jumping genes." Retrotransposons are small stretches of DNA that are copied from one location in the genome and inserted elsewhere, typically during the genesis of sperm and egg cells. The L1 variety of retrotransposons, in particular, are responsible for about one third of the human genome.

The mouse model of L1 retrotransposition is expected to increase our understanding of the nature of jumping genes and their implication in disease. According to the Penn researchers, the mouse model may also prove to be a useful tool for studying how a gene functions by knocking it out through L1 insertion. Their report is in the December issue of Nature Genetics and currently available online (see below for URL).


"There are about a half million L1 sequences in the human genome, of which 80 to 100 remain an active source of mutation," said Haig H. Kazazian, Jr., MD, Chair of Penn’s Department of Genetics and senior author in the study. "This animal model will help us better understand how this happens, as well as provide a useful tool for discovering the function of known genes."

In humans, retrotransposons cause mutations in germ line cells, such as sperm, which continually divide and multiply. Like an errant bit of computer code that gets reproduced and spread online, retrotransposons are adept at being copied from one location and placed elsewhere in the chromosomes. When retrotransposons are inserted into important genes, they can cause disease, such as hemophilia and muscular dystrophy. On the other hand, retrotransposons have been around for 500 to 600 million years, and have contributed a lot to evolutionary change.

"In the grand scheme of evolution, retrotransposons have behaved like fickle gods, arbitrarily wreaking havoc in some and benefiting others," said Kazazian. "Retrotransposons can cause new genes to emerge that may benefit an organism - or they can kill by knocking out important genes. Overall, however, it seems that they are neutral and add to the apparent sloppiness of the genome."

For some time, researchers have been trying to understand how retrotransposons affect the genome and, in addition, what science may learn from the techniques they employ. According to Kazazian and his colleagues, the mouse model displays high-frequency chromosome to chromosome retrotransposition of human L1s, which behave in exactly the same way as they do in humans. While the current tissue culture model works well, it does not mimic the way retrotransposons jump in chromosomes.

The researchers believe that by understanding the mechanics of retrotransposition, they might be able to use similar techniques for genetic therapies in humans. They also hope to learn more about the basic mysteries behind retrotransposition, such as why L1 retrotransposons only seem to effect the germ line and not any other type of cell in the body.

As science refines the content of the mouse genome database, Kazazian foresees that this model will also be useful for determining the function of different genes. As new genes are identified, their purpose can be resolved by using retrotransposons to knock them out of commission. "Such knowledge has direct impact in humans," said Kazazian, "Information important to determining the nature of human diseases and developing new therapeutics can be extrapolated from our knowledge of the mouse genome."

Funding for this research was provided by grants from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>