Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It May Take A Mouse to Understand The Behavior of "Jumping Genes"

03.12.2002


Mouse Model May Also Aid In Discovery of Gene Function



Researchers at the University of Pennsylvania School of Medicine have bred a mouse to model human L1 retrotransposons, the so-called "jumping genes." Retrotransposons are small stretches of DNA that are copied from one location in the genome and inserted elsewhere, typically during the genesis of sperm and egg cells. The L1 variety of retrotransposons, in particular, are responsible for about one third of the human genome.

The mouse model of L1 retrotransposition is expected to increase our understanding of the nature of jumping genes and their implication in disease. According to the Penn researchers, the mouse model may also prove to be a useful tool for studying how a gene functions by knocking it out through L1 insertion. Their report is in the December issue of Nature Genetics and currently available online (see below for URL).


"There are about a half million L1 sequences in the human genome, of which 80 to 100 remain an active source of mutation," said Haig H. Kazazian, Jr., MD, Chair of Penn’s Department of Genetics and senior author in the study. "This animal model will help us better understand how this happens, as well as provide a useful tool for discovering the function of known genes."

In humans, retrotransposons cause mutations in germ line cells, such as sperm, which continually divide and multiply. Like an errant bit of computer code that gets reproduced and spread online, retrotransposons are adept at being copied from one location and placed elsewhere in the chromosomes. When retrotransposons are inserted into important genes, they can cause disease, such as hemophilia and muscular dystrophy. On the other hand, retrotransposons have been around for 500 to 600 million years, and have contributed a lot to evolutionary change.

"In the grand scheme of evolution, retrotransposons have behaved like fickle gods, arbitrarily wreaking havoc in some and benefiting others," said Kazazian. "Retrotransposons can cause new genes to emerge that may benefit an organism - or they can kill by knocking out important genes. Overall, however, it seems that they are neutral and add to the apparent sloppiness of the genome."

For some time, researchers have been trying to understand how retrotransposons affect the genome and, in addition, what science may learn from the techniques they employ. According to Kazazian and his colleagues, the mouse model displays high-frequency chromosome to chromosome retrotransposition of human L1s, which behave in exactly the same way as they do in humans. While the current tissue culture model works well, it does not mimic the way retrotransposons jump in chromosomes.

The researchers believe that by understanding the mechanics of retrotransposition, they might be able to use similar techniques for genetic therapies in humans. They also hope to learn more about the basic mysteries behind retrotransposition, such as why L1 retrotransposons only seem to effect the germ line and not any other type of cell in the body.

As science refines the content of the mouse genome database, Kazazian foresees that this model will also be useful for determining the function of different genes. As new genes are identified, their purpose can be resolved by using retrotransposons to knock them out of commission. "Such knowledge has direct impact in humans," said Kazazian, "Information important to determining the nature of human diseases and developing new therapeutics can be extrapolated from our knowledge of the mouse genome."

Funding for this research was provided by grants from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>