Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It May Take A Mouse to Understand The Behavior of "Jumping Genes"

03.12.2002


Mouse Model May Also Aid In Discovery of Gene Function



Researchers at the University of Pennsylvania School of Medicine have bred a mouse to model human L1 retrotransposons, the so-called "jumping genes." Retrotransposons are small stretches of DNA that are copied from one location in the genome and inserted elsewhere, typically during the genesis of sperm and egg cells. The L1 variety of retrotransposons, in particular, are responsible for about one third of the human genome.

The mouse model of L1 retrotransposition is expected to increase our understanding of the nature of jumping genes and their implication in disease. According to the Penn researchers, the mouse model may also prove to be a useful tool for studying how a gene functions by knocking it out through L1 insertion. Their report is in the December issue of Nature Genetics and currently available online (see below for URL).


"There are about a half million L1 sequences in the human genome, of which 80 to 100 remain an active source of mutation," said Haig H. Kazazian, Jr., MD, Chair of Penn’s Department of Genetics and senior author in the study. "This animal model will help us better understand how this happens, as well as provide a useful tool for discovering the function of known genes."

In humans, retrotransposons cause mutations in germ line cells, such as sperm, which continually divide and multiply. Like an errant bit of computer code that gets reproduced and spread online, retrotransposons are adept at being copied from one location and placed elsewhere in the chromosomes. When retrotransposons are inserted into important genes, they can cause disease, such as hemophilia and muscular dystrophy. On the other hand, retrotransposons have been around for 500 to 600 million years, and have contributed a lot to evolutionary change.

"In the grand scheme of evolution, retrotransposons have behaved like fickle gods, arbitrarily wreaking havoc in some and benefiting others," said Kazazian. "Retrotransposons can cause new genes to emerge that may benefit an organism - or they can kill by knocking out important genes. Overall, however, it seems that they are neutral and add to the apparent sloppiness of the genome."

For some time, researchers have been trying to understand how retrotransposons affect the genome and, in addition, what science may learn from the techniques they employ. According to Kazazian and his colleagues, the mouse model displays high-frequency chromosome to chromosome retrotransposition of human L1s, which behave in exactly the same way as they do in humans. While the current tissue culture model works well, it does not mimic the way retrotransposons jump in chromosomes.

The researchers believe that by understanding the mechanics of retrotransposition, they might be able to use similar techniques for genetic therapies in humans. They also hope to learn more about the basic mysteries behind retrotransposition, such as why L1 retrotransposons only seem to effect the germ line and not any other type of cell in the body.

As science refines the content of the mouse genome database, Kazazian foresees that this model will also be useful for determining the function of different genes. As new genes are identified, their purpose can be resolved by using retrotransposons to knock them out of commission. "Such knowledge has direct impact in humans," said Kazazian, "Information important to determining the nature of human diseases and developing new therapeutics can be extrapolated from our knowledge of the mouse genome."

Funding for this research was provided by grants from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>