Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It May Take A Mouse to Understand The Behavior of "Jumping Genes"

03.12.2002


Mouse Model May Also Aid In Discovery of Gene Function



Researchers at the University of Pennsylvania School of Medicine have bred a mouse to model human L1 retrotransposons, the so-called "jumping genes." Retrotransposons are small stretches of DNA that are copied from one location in the genome and inserted elsewhere, typically during the genesis of sperm and egg cells. The L1 variety of retrotransposons, in particular, are responsible for about one third of the human genome.

The mouse model of L1 retrotransposition is expected to increase our understanding of the nature of jumping genes and their implication in disease. According to the Penn researchers, the mouse model may also prove to be a useful tool for studying how a gene functions by knocking it out through L1 insertion. Their report is in the December issue of Nature Genetics and currently available online (see below for URL).


"There are about a half million L1 sequences in the human genome, of which 80 to 100 remain an active source of mutation," said Haig H. Kazazian, Jr., MD, Chair of Penn’s Department of Genetics and senior author in the study. "This animal model will help us better understand how this happens, as well as provide a useful tool for discovering the function of known genes."

In humans, retrotransposons cause mutations in germ line cells, such as sperm, which continually divide and multiply. Like an errant bit of computer code that gets reproduced and spread online, retrotransposons are adept at being copied from one location and placed elsewhere in the chromosomes. When retrotransposons are inserted into important genes, they can cause disease, such as hemophilia and muscular dystrophy. On the other hand, retrotransposons have been around for 500 to 600 million years, and have contributed a lot to evolutionary change.

"In the grand scheme of evolution, retrotransposons have behaved like fickle gods, arbitrarily wreaking havoc in some and benefiting others," said Kazazian. "Retrotransposons can cause new genes to emerge that may benefit an organism - or they can kill by knocking out important genes. Overall, however, it seems that they are neutral and add to the apparent sloppiness of the genome."

For some time, researchers have been trying to understand how retrotransposons affect the genome and, in addition, what science may learn from the techniques they employ. According to Kazazian and his colleagues, the mouse model displays high-frequency chromosome to chromosome retrotransposition of human L1s, which behave in exactly the same way as they do in humans. While the current tissue culture model works well, it does not mimic the way retrotransposons jump in chromosomes.

The researchers believe that by understanding the mechanics of retrotransposition, they might be able to use similar techniques for genetic therapies in humans. They also hope to learn more about the basic mysteries behind retrotransposition, such as why L1 retrotransposons only seem to effect the germ line and not any other type of cell in the body.

As science refines the content of the mouse genome database, Kazazian foresees that this model will also be useful for determining the function of different genes. As new genes are identified, their purpose can be resolved by using retrotransposons to knock them out of commission. "Such knowledge has direct impact in humans," said Kazazian, "Information important to determining the nature of human diseases and developing new therapeutics can be extrapolated from our knowledge of the mouse genome."

Funding for this research was provided by grants from the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>