Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for sympathy uncovers patterns of brain activity

03.12.2002


Neuroscientists trying to tease out the mechanisms underlying the basis of human sympathy have found that such feelings trigger brain activity not only in areas associated with emotion but also in areas associated with performing an action. But, when people act in socially inappropriate ways this activity is replaced by increased activity in regions associated with social conflict.



Understanding the neurophysiology of such basic human characteristics as sympathy is important because some people lack those feelings and may behave in anti-social ways that can be extremely costly to society, said Dr. Jean Decety of the University of Washington. Decety heads the social-cognitive neuroscience laboratory at the UW’s Center for Mind, Brain & Learning and is lead author of a new study that appears in a just-published special issue of the journal Neuropsychologia.

In the study, Decety and doctoral student Thierry Chaminade used positron emission tomography (PET) scans to explore what brain systems were activated while people watched videos of actors telling stories that were either sad or neutral in tone. The neutral stories were based on everyday activities such as cooking and shopping. The sad stories described events that could have happened to anyone, such as a drowning accident or the illness of a close relative. The actors were videotaped telling the stories, which lasted one to two minutes, with three different expressions – neutral, happy or sad.


Decety and Chaminade found that, as people watched the videos, different brain regions were activated depending on whether an actor’s expressions matched the emotional content of the story.

When the story content and expression were congruent, neural activity increased in emotional processing areas of the brain – the amygdala and the adjacent orbitofrontal cortex and the insula. In addition, increased activation also was noted in what neuroscientists call the "shared representational" network which includes the right inferior parietal cortex and premotor cortex. This network refers to brain areas that are activated when a person has a mental image of performing an action, actually performs that action or observes someone else performing it.

However, these emotional processing areas were suppressed when the story content and expression were mismatched, such as by having a person smile while telling about his mother’s death. Instead, activation was centered in the ventromedial prefrontal cortex and superior frontal gyrus, regions that deal with social conflict.

After watching each video clip, the 12 subjects in the study also were asked to rate the storyteller’s mood and likability. Not surprisingly the subjects found the storytellers more likable and felt more sympathetic toward them when their emotional expression matched a story’s content than when it did not.

"Sympathy is a very basic way in which we are connected to other people," said Decety. "We feel more sympathy if the person we are interacting with is more like us. When people act in strange ways, you feel that person is not like you.

"It is important to note that the emotional processing network of the brain was not activated when the subjects in our study watched what we would consider to be inappropriate social behavior. Knowing how the brain typically functions in people when they are sympathetic will lead to a better understanding of why some individuals lack sympathy."


The research was funded by France’s Institut de la Santé et de la Recherche Médicale, the Talaris Research Institute and the Apex Foundation, the family foundation created by Bruce and Jolene McCaw.

For more information, contact Decety at (206) 543-7357or decety@u.washington.edu or Rose Pike at the Center for Mind, Brain & Learning at (206) 221-6473 or rosepike@u.washington.edu


Joel Schwarz | EurekAlert!
Further information:
http://adam.cmbl.washington.edu
http://www.washington.edu/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>