Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stem cell maintenance protein found

02.12.2002


Scientists have identified a critical, new stem cell protein – a marked advance in the elucidation of the molecular blueprint of stem cells.



Drs. Robert Tsai and Ronald McKay at the NIH have discovered a novel gene, called nucleostemin, whose encoded protein is necessary for maintaining the proliferative capacity of embryonic and adult stem cells, and possibly some types of cancer cells. Their report is published in the December 1 issue of the scientific journal Genes & Development.

Embryonic stem cells are pluripotent progenitor cells that can differentiate into all of the cell types of the body. Adult stem cells, in contrast, have a less versatile potential: Their differentiation is generally restricted to the cell types of a specific tissue (although recent work has expanded the previously known range of adult stem cell differentiation potential).


A key feature of both embryonic and adult stem cells is their capacity for self-renewal as well as differentiation – ensuring that a constant pool of undifferentiated stem cells always exists. Drs. Tsai and McKay have identified nucleostemin as a critical regulator of this delicate balance.

Drs. Tsai and McKay originally identified nucleostemin as a protein abundantly expressed in rat CNS (central nervous system) stem cells that is markedly down-regulated during differentiation, suggesting a possible role in stem cell maintenance. The researchers went on to show that nucleostemin is expressed in various adult and embryonic stem cell populations, as well as in some human cancer cell lines, and that its expression is consistently turned-off during the differentiation of stem cells into more specialized cell types.

Using the RNAi gene silencing method, Drs. Tsai and McKay disrupted normal nucleostemin expression patterns in rodent CNS stem cells and human osteosarcoma cancer cells. They found that the aberrant down-regulation of nucleostemin in these cells caused a decrease in cell proliferation, suggesting that the expression of nucleostemin is required for stem cell -- and some cancer cell -- proliferation.

Although the precise mechanism of nucleostemin action is not yet fully understood, the identification of a gene whose protein product specifically promotes the proliferation of stem cells and some cancer cells has important clinical implications for both the use of stem cells in regenerative medicine as well as the treatment of cancer. As Dr. Tsai explains, "The characterization of nucleostemin suggests that a unique primitive state is shared by both stem cells and cancer cell lines. The identification of common molecules shared by both stem cells and cancer cells may facilitate the discovery of self-renewing populations within a given tumor by evaluating their expression levels. Perhaps, in the future, targeting these cells will achieve a better therapeutic outcome."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>