Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stem cell maintenance protein found

02.12.2002


Scientists have identified a critical, new stem cell protein – a marked advance in the elucidation of the molecular blueprint of stem cells.



Drs. Robert Tsai and Ronald McKay at the NIH have discovered a novel gene, called nucleostemin, whose encoded protein is necessary for maintaining the proliferative capacity of embryonic and adult stem cells, and possibly some types of cancer cells. Their report is published in the December 1 issue of the scientific journal Genes & Development.

Embryonic stem cells are pluripotent progenitor cells that can differentiate into all of the cell types of the body. Adult stem cells, in contrast, have a less versatile potential: Their differentiation is generally restricted to the cell types of a specific tissue (although recent work has expanded the previously known range of adult stem cell differentiation potential).


A key feature of both embryonic and adult stem cells is their capacity for self-renewal as well as differentiation – ensuring that a constant pool of undifferentiated stem cells always exists. Drs. Tsai and McKay have identified nucleostemin as a critical regulator of this delicate balance.

Drs. Tsai and McKay originally identified nucleostemin as a protein abundantly expressed in rat CNS (central nervous system) stem cells that is markedly down-regulated during differentiation, suggesting a possible role in stem cell maintenance. The researchers went on to show that nucleostemin is expressed in various adult and embryonic stem cell populations, as well as in some human cancer cell lines, and that its expression is consistently turned-off during the differentiation of stem cells into more specialized cell types.

Using the RNAi gene silencing method, Drs. Tsai and McKay disrupted normal nucleostemin expression patterns in rodent CNS stem cells and human osteosarcoma cancer cells. They found that the aberrant down-regulation of nucleostemin in these cells caused a decrease in cell proliferation, suggesting that the expression of nucleostemin is required for stem cell -- and some cancer cell -- proliferation.

Although the precise mechanism of nucleostemin action is not yet fully understood, the identification of a gene whose protein product specifically promotes the proliferation of stem cells and some cancer cells has important clinical implications for both the use of stem cells in regenerative medicine as well as the treatment of cancer. As Dr. Tsai explains, "The characterization of nucleostemin suggests that a unique primitive state is shared by both stem cells and cancer cell lines. The identification of common molecules shared by both stem cells and cancer cells may facilitate the discovery of self-renewing populations within a given tumor by evaluating their expression levels. Perhaps, in the future, targeting these cells will achieve a better therapeutic outcome."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>