Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of pain-modulating enzyme described by scientists at the Scripps Research Institute

29.11.2002


A group of researchers from The Scripps Research Institute (TSRI) have solved the structure of an enzyme that modulates central nervous system (CNS) functions such as pain perception, cognition, feeding, sleep, and locomotor activity.

The enzyme, described in the latest issue of the journal Science, is called fatty acid amide hydrolase (FAAH), and it breaks down certain fatty signaling molecules that reside in the lipid membranes of CNS cells. The TSRI group reports that FAAH modulates the action of these fatty signaling molecules through an unusual mechanism of action whereby it scoops them out of the cell membranes and chews them up.

"I envision that if someone could make a specific inhibitor to FAAH, you could, in principal, get pain relief without any of the side effects," says Benjamin Cravatt, one of the paper’s lead authors and an investigator in TSRI’s Department of Cell Biology, Department of Chemistry, and The Skaggs Institute for Chemical Biology.



"As soon as we had the view of the active site, we knew FAAH could be used to make lead clinical candidates," adds Raymond Stevens, who is a professor in the Department of Molecular Biology and Chemistry at TSRI and the other lead author on the paper. "The deep pocket with well-defined cavities provides the guidance to take the currently available tight binding inhibitors and improve on their specificity and pharmakokinetic properties."

Pain Management and FAAH

Easing pain is practically synonymous with practicing medicine, and since before the days of Hippocrates, doctors have sought the best ways of doing this--looking for compounds that not only ease pain, but do so as fast, effectively, and lastingly as possible--and without any unwanted side effects.

Every analgesic, from opiates to hypnotism to electroshocks to balms, have side effects, and therein lies the rub: whether relieving the pain or the side effects is more pressing.

One compound that has been hotly debated in the last 10 years is delta-9-tetrahydrocannabinol (THC), the active ingredient in marijuana. The reason THC works is that it mimics the action of natural cannabinoids that the body produces in signaling cascades in response to a peripheral pain stimulus. THC binds to "CB-1" receptors on cells on the rostral ventromedial medulla, a pain-modulating center of the brain, decreasing sensitivity to pain.

Unfortunately, the receptors that THC bind to are also widely expressed in other parts of the brain, such as in the memory and information-processing centers of the hippocampus. Binding to nerve cells of the hippocampus and other cells elsewhere in the body, THC creates a range of side effects as it activates CB-1 mediated signaling--including distorted perception, difficulty in problem-solving, loss of coordination, and increased heart rate and blood pressure, anxiety, and panic attacks.

The challenge posed by THC and other cannabinoids is to find a way to use them to produce effective, long-lasting relief from pain without the deleterious side effects. Now Cravatt and Stevens think they know just how to do that.

The solution, as they see it, is to increase the efficacy of the natural, endogenous cannabinoids ("endocannabinoids") the body produces to modulate pain sensations.

"When you feel pain, you release endocannabinoids [which provide some natural pain relief]," says Cravatt. "Then the amplitude and duration of their activity are regulated by how fast they are broken down."

In particular, the body releases an endogenous cannabinoid called anandamide, a name derived from the Sanskrit word meaning "internal bliss." When the body senses pain, anandamide binds to CB-1 and nullifies pain by blocking the signaling. However, this effect is weak and short-lived as FAAH quickly metabolizes the anandamide--the compound has a half-life of only a few minutes in vivo.

In some ways, THC is superior to anandamide as a pain reliever because it is not as readily metabolized by FAAH. But THC goes on to suppress cannabinoid receptor activity all over the body. This, coupled with the fact that it is a controlled substance, makes THC an unattractive target for developing therapeutics.

FAAH is much more attractive target for pain therapy because by inhibiting FAAH, you would increase the longevity of anandamide molecules--preventing their breakdown and allowing them to continue providing some natural pain relief.

The structure that Cravatt, Stevens, and their TSRI colleagues solved should form a template for designing specific inhibitors that control the action of FAAH when the body is sensing pain and releasing anandamide.

The research article, "Structural Adaptations in a Membrane Enzyme that Terminates Endocannabinoid Signaling" is authored by Michael H. Bracey, Michael A. Hanson, Kim R. Masuda, Raymond C. Stevens, and Benjamin F. Cravatt, and appears in the November 29, 2002 issue of the journal Science.

The research was funded by the National Institute on Drug Abuse, the Searle Scholars Program, The Skaggs Institute for Chemical Biology, a National Research Service Award, and a Jabinson graduate fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>