Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multitasking genes manage related traits in plants

28.11.2002


Think of it as finding the ultimate genetic engineers.




A plant biologist at Michigan State University has harvested clues about genes that coordinate the development of plant parts that must work together.

The work, published in the Nov. 28 issue of the British science journal Nature, points to a single mechanism that regulates the growth of related parts in flowers – kind of a genetic project manager.


"This is why we’re not just a discombobulated collection of parts. We’re coordinated," said paper author Jeffrey Conner, an associate professor of plant biology. "I found that the same genes can affect pairs of related traits."

Scientists have understood that creatures evolve to optimize their ability to survive and reproduce, ultimately building a plant or animal better adapted to its environment.

In plants, this can be seen in the size and proportions of a flower. Flowers are serious business in the plant world, the ground zero of reproduction. The parts of a flower – the petal, stamen and pistil – must be precisely constructed to lure a pollinator in to both fertilize the plant and carry away genetic material in the pollen to other flowers.

If a flower’s tube – where the nectar is – was short in relation to its stamens, the male parts of the flower, a bee could dive in, nab nectar and leave without rubbing up against the anthers and picking up their pollen.

"A flower has to evolve to successfully manipulate the behavior of the animal that pollinates it to get what it needs," Conner said. "The key is to make contact with the anthers and stigma. If that doesn’t happen, it’s worthless, from the plant’s point of view."

Conner, who does his National Science Foundation–funded research at MSU’s Kellogg Biological Station, spent years randomly crossbreeding generations of wild radish to understand how the plant coordinates its floral parts to best reproduce.

He found that consistently the plant would evolve to make sure the flower’s tube and stamen parts developed in tight correlation, and that this development was traced to a number of genes doing double duty.

This genetic mechanism creates a design stability that carries the organism successfully through evolution.

While Conner works on plants, he said this tight orchestration is seen in all organisms. Genetic coordination, for instance, is the reason human arms don’t grow out of concert with legs and send people’s knuckles dragging to the ground.

"It keeps the parts in the right proportion, so they can do a job," he said.

Understanding that a single gene affects more than one part can help reveal why plants are successful and how they maintain a structural stability over time.

It also, Conner said, opens new areas of study in all organisms about the role one gene, or group of genes, can play.


ADDITIONAL MEDIA CONTACT:
Sue Nichols, University Relations 517-355-2281

MEDIA COMMUNICATIONS
Division of University Relations
403 Olds Hall
Michigan State University
East Lansing, MI 48824-1047


Jeff Conner | EurekAlert!
Further information:
http://newsroom.msu.edu

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>