Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multitasking genes manage related traits in plants

28.11.2002


Think of it as finding the ultimate genetic engineers.




A plant biologist at Michigan State University has harvested clues about genes that coordinate the development of plant parts that must work together.

The work, published in the Nov. 28 issue of the British science journal Nature, points to a single mechanism that regulates the growth of related parts in flowers – kind of a genetic project manager.


"This is why we’re not just a discombobulated collection of parts. We’re coordinated," said paper author Jeffrey Conner, an associate professor of plant biology. "I found that the same genes can affect pairs of related traits."

Scientists have understood that creatures evolve to optimize their ability to survive and reproduce, ultimately building a plant or animal better adapted to its environment.

In plants, this can be seen in the size and proportions of a flower. Flowers are serious business in the plant world, the ground zero of reproduction. The parts of a flower – the petal, stamen and pistil – must be precisely constructed to lure a pollinator in to both fertilize the plant and carry away genetic material in the pollen to other flowers.

If a flower’s tube – where the nectar is – was short in relation to its stamens, the male parts of the flower, a bee could dive in, nab nectar and leave without rubbing up against the anthers and picking up their pollen.

"A flower has to evolve to successfully manipulate the behavior of the animal that pollinates it to get what it needs," Conner said. "The key is to make contact with the anthers and stigma. If that doesn’t happen, it’s worthless, from the plant’s point of view."

Conner, who does his National Science Foundation–funded research at MSU’s Kellogg Biological Station, spent years randomly crossbreeding generations of wild radish to understand how the plant coordinates its floral parts to best reproduce.

He found that consistently the plant would evolve to make sure the flower’s tube and stamen parts developed in tight correlation, and that this development was traced to a number of genes doing double duty.

This genetic mechanism creates a design stability that carries the organism successfully through evolution.

While Conner works on plants, he said this tight orchestration is seen in all organisms. Genetic coordination, for instance, is the reason human arms don’t grow out of concert with legs and send people’s knuckles dragging to the ground.

"It keeps the parts in the right proportion, so they can do a job," he said.

Understanding that a single gene affects more than one part can help reveal why plants are successful and how they maintain a structural stability over time.

It also, Conner said, opens new areas of study in all organisms about the role one gene, or group of genes, can play.


ADDITIONAL MEDIA CONTACT:
Sue Nichols, University Relations 517-355-2281

MEDIA COMMUNICATIONS
Division of University Relations
403 Olds Hall
Michigan State University
East Lansing, MI 48824-1047


Jeff Conner | EurekAlert!
Further information:
http://newsroom.msu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>