Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metre-Long Medusas And Molluscs Seize The Ocean

27.11.2002


The first outbreak of the evolution of multicellular organisms falls on the Wend, the last period of the Proterozoic (Precambrian), about 620-550 million years ago. At that time, climate of our planet was rather cold, and glaciers that covered the single supercontinent nearly reached the equator. The cold is beneficial for the evolution of sea creatures.



In modern seas, significant concentrations of dissolved oxygen, phosphates, and the organic matter provide for a high biological productivity and the appearance of very large animals. In ancient times, the situation was probably similar: first multicellular organisms lived in cold seawater.

As is known, there was a sharp increase in the fauna diversity in the Cambrian Period. However, in the preceding period, Wend, the fauna was rather rich too, as said Mikhail A. Fedonkin in his report of October 17 in the Vavilov Institute of General Genetics (Moscow). Fedonkin is the corresponding member of the Russian Academy of Sciences and the head of the Laboratory of Precambrian Organisms in the Paleontological Institute in Moscow.


Most exiting news has come from the White Sea area. Imprints of various creatures are found within deposits of the Wend Period (clay and sandstone strata with a total thickness of about one kilometre). Some of those creatures resemble modern sponges. Others are like polyps: actiniae or sea anemones plunged into the ground so that only the crown of tentacles is left above. Some animals were real giants: medusas that were attached to the sea bottom reached one meter in diameter!

However, German palaeontologist Adolf Seilacher recently stated that the fauna of the Wend had no relationship with any of modern types and classes of animals, but was a unique evolutionary experiment: there was the world of giant unicellular organisms. But studies of Russian scientists refuted this extraordinary hypothesis.

Specialists from the Paleontological Institute of the Russian Academy of Sciences proved using numerous facts that many Precambrian creatures had a three-dimensional shape (but not a two-dimensional plate-like shape, as Seilacher suggested). In addition, some of them were capable of moving: their pathways were found in fossils together with their body imprints. For example, one weird creature (Dikinsonia), which was one-meter-long, round-shaped, and covered with rough skinny shell, moved about with casual changes in direction and stops, like modern invertebrates do when look for food. A giant cell cannot be so bulky and crawl that way. So, the Seilacher’’’’s hypothesis is obviously false: the fauna of the Wend was multicellular.

Another curious animal (Kimberella) was reconstructed by Australian palaeontologists from imprints as a medusa and shown in that form in some books. However, that reconstruction was based on too many assumptions. Recently, Russian scientists have revealed that it was not a medusa, but a mollusc: a kind of a large snail that appeared from its shell as a fluffy frill resembling old-fashioned Spanish neckwear.

Such creatures populated warm water basins in the Cambrian Period, about 500 million years ago. An increased concentration of carbonates in warm water allowed the fauna to build a more complex skeleton. At that time, first attempts to conquer the land were done. Fedonkin and his colleague E. Echelson from the United States have made a detailed description of fossil imprints resembling those of automobile tires and left by large animals that lived within the tidal zone of the seacoast. Thus, one more chapter is added to the early history of the animal world of the Earth.

Mrs. Elena Kleschenko | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-11-27-02_261_e.htm

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>