Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How crayfish do the locomotion

27.11.2002


Using computer models and experiments, researchers at the University of California, Davis, have identified the neurons and connections that are necessary for crayfish to swim.

"We can now pin down the essential components of the circuit," said Brian Mulloney, a professor of neurobiology, physiology and behavior at UC Davis.

The nervous system controlling locomotion is highly tuned and very stable across different groups of animals, Mulloney said. That makes crayfish a good model for much more complex nervous systems such as the human spinal cord.



New advances in the field were discussed in a session chaired by Mulloney at the Society for Neuroscience meeting in November 2002.

Crayfish swim by beating pairs of paddles called swimmerets on each body segment. The swimmerets move in sequence, starting at the back of the animal and moving forward. The movements of each segment keep a precise difference in timing, while varying in speed and force.

To keep those movements in the right sequence, the animal’s nervous system has to integrate signals from each of these different segments as well as signals from the brain.

Mulloney’s group, working with mathematicians Stephanie Jones at Harvard University and Frances Skinner at the University of Toronto, built mathematical models of the crayfish nervous system to see how they might work. They used those models to design experiments where they recorded impulses in crayfish nerves.

They showed that the swimmeret system is made up of eight modules of 70 neurons each. They found which neurons are necessary to complete the circuit, and what cells they connect to.

As the swimmerets beat, each module receives a stream of nerve impulses from the modules behind and in front of it. Signals from behind indicate a power stroke; those from the front represent a recovery stroke. Mulloney’s team has found that those different messages converge on the same target neuron, which integrates them into a graded, non-spiking signal. This combined signal tells the module when to release neurotransmitters -- chemicals which change the timing and force of limb movement.

The same basic plan is likely found in insects and other animals, Mulloney said.


###
Media contacts: Brian Mulloney, Neurobiology, Physiology and Behavior, (530) 752-1110, bcmulloney@ucdavis.edu


Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>