Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How crayfish do the locomotion


Using computer models and experiments, researchers at the University of California, Davis, have identified the neurons and connections that are necessary for crayfish to swim.

"We can now pin down the essential components of the circuit," said Brian Mulloney, a professor of neurobiology, physiology and behavior at UC Davis.

The nervous system controlling locomotion is highly tuned and very stable across different groups of animals, Mulloney said. That makes crayfish a good model for much more complex nervous systems such as the human spinal cord.

New advances in the field were discussed in a session chaired by Mulloney at the Society for Neuroscience meeting in November 2002.

Crayfish swim by beating pairs of paddles called swimmerets on each body segment. The swimmerets move in sequence, starting at the back of the animal and moving forward. The movements of each segment keep a precise difference in timing, while varying in speed and force.

To keep those movements in the right sequence, the animal’s nervous system has to integrate signals from each of these different segments as well as signals from the brain.

Mulloney’s group, working with mathematicians Stephanie Jones at Harvard University and Frances Skinner at the University of Toronto, built mathematical models of the crayfish nervous system to see how they might work. They used those models to design experiments where they recorded impulses in crayfish nerves.

They showed that the swimmeret system is made up of eight modules of 70 neurons each. They found which neurons are necessary to complete the circuit, and what cells they connect to.

As the swimmerets beat, each module receives a stream of nerve impulses from the modules behind and in front of it. Signals from behind indicate a power stroke; those from the front represent a recovery stroke. Mulloney’s team has found that those different messages converge on the same target neuron, which integrates them into a graded, non-spiking signal. This combined signal tells the module when to release neurotransmitters -- chemicals which change the timing and force of limb movement.

The same basic plan is likely found in insects and other animals, Mulloney said.

Media contacts: Brian Mulloney, Neurobiology, Physiology and Behavior, (530) 752-1110,

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>