Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How crayfish do the locomotion

27.11.2002


Using computer models and experiments, researchers at the University of California, Davis, have identified the neurons and connections that are necessary for crayfish to swim.

"We can now pin down the essential components of the circuit," said Brian Mulloney, a professor of neurobiology, physiology and behavior at UC Davis.

The nervous system controlling locomotion is highly tuned and very stable across different groups of animals, Mulloney said. That makes crayfish a good model for much more complex nervous systems such as the human spinal cord.



New advances in the field were discussed in a session chaired by Mulloney at the Society for Neuroscience meeting in November 2002.

Crayfish swim by beating pairs of paddles called swimmerets on each body segment. The swimmerets move in sequence, starting at the back of the animal and moving forward. The movements of each segment keep a precise difference in timing, while varying in speed and force.

To keep those movements in the right sequence, the animal’s nervous system has to integrate signals from each of these different segments as well as signals from the brain.

Mulloney’s group, working with mathematicians Stephanie Jones at Harvard University and Frances Skinner at the University of Toronto, built mathematical models of the crayfish nervous system to see how they might work. They used those models to design experiments where they recorded impulses in crayfish nerves.

They showed that the swimmeret system is made up of eight modules of 70 neurons each. They found which neurons are necessary to complete the circuit, and what cells they connect to.

As the swimmerets beat, each module receives a stream of nerve impulses from the modules behind and in front of it. Signals from behind indicate a power stroke; those from the front represent a recovery stroke. Mulloney’s team has found that those different messages converge on the same target neuron, which integrates them into a graded, non-spiking signal. This combined signal tells the module when to release neurotransmitters -- chemicals which change the timing and force of limb movement.

The same basic plan is likely found in insects and other animals, Mulloney said.


###
Media contacts: Brian Mulloney, Neurobiology, Physiology and Behavior, (530) 752-1110, bcmulloney@ucdavis.edu


Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>