Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a cellular basis for a male biological clock

26.11.2002


Researchers at the University of Washington have discovered a cellular basis for what many have long suspected: Men, as well as women, have a reproductive clock that ticks down with age.

A recent study revealed that sperm in men older than 35 showed more DNA damage than that of men in the younger age group. In addition, the older men’s bodies appeared less efficient at eliminating the damaged cells, which could pass along problems to offspring.

"When you talk about having children, there has been a lot of focus on maternal age," said Narendra Singh, research assistant professor in the UW Department of Bioengineering and lead researcher on the study. "I think our study shows that paternal age is also relevant."



Charles Muller, with the UW Department of Urology and a collaborator on the study, recently presented the findings at the annual meeting of the American Society for Reproductive Medicine in Seattle.

In the study, researchers recruited 60 men, age 22 to 60, from laboratory and clinical groups. A computerized semen analysis was performed for each of the subjects, looking for breaks in sperm cell DNA and evidence of apoptosis, or cell suicide. Normally, when something goes irreparably wrong in a cell, that cell is programmed to kill itself as a means of protecting the body.

The researchers found that men over age 35 had sperm with lower motility and more highly damaged DNA in the form of DNA double-strand breaks. The older group also had fewer apoptotic cells – an important discovery, Singh said.

"A really key factor that differentiates sperm from other cells in the body is that they do not repair their DNA damage," he said. "Most other cells do."

As a result, the only way to avoid passing sperm DNA damage to a child is for the damaged cells to undergo apoptosis, a process that the study indicates declines with age.

"So in older men, the sperm are accumulating more damage, and those severely damaged sperm are not being eliminated," Singh said. "That means some of that damage could be transmitted to the baby." More research is needed to determine just what the risks are. Other reseachers in the study included Richard E. Berger, UW professor of urology. The work was supported by the Paul G. Allen Foundation for Medical Research.


For more information, contact Singh at 206- 685-2060 or narendra@u.washington.edu, or
Muller at 206-543-9504 or cmuller@u.washington.edu

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>