Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a cellular basis for a male biological clock

26.11.2002


Researchers at the University of Washington have discovered a cellular basis for what many have long suspected: Men, as well as women, have a reproductive clock that ticks down with age.

A recent study revealed that sperm in men older than 35 showed more DNA damage than that of men in the younger age group. In addition, the older men’s bodies appeared less efficient at eliminating the damaged cells, which could pass along problems to offspring.

"When you talk about having children, there has been a lot of focus on maternal age," said Narendra Singh, research assistant professor in the UW Department of Bioengineering and lead researcher on the study. "I think our study shows that paternal age is also relevant."



Charles Muller, with the UW Department of Urology and a collaborator on the study, recently presented the findings at the annual meeting of the American Society for Reproductive Medicine in Seattle.

In the study, researchers recruited 60 men, age 22 to 60, from laboratory and clinical groups. A computerized semen analysis was performed for each of the subjects, looking for breaks in sperm cell DNA and evidence of apoptosis, or cell suicide. Normally, when something goes irreparably wrong in a cell, that cell is programmed to kill itself as a means of protecting the body.

The researchers found that men over age 35 had sperm with lower motility and more highly damaged DNA in the form of DNA double-strand breaks. The older group also had fewer apoptotic cells – an important discovery, Singh said.

"A really key factor that differentiates sperm from other cells in the body is that they do not repair their DNA damage," he said. "Most other cells do."

As a result, the only way to avoid passing sperm DNA damage to a child is for the damaged cells to undergo apoptosis, a process that the study indicates declines with age.

"So in older men, the sperm are accumulating more damage, and those severely damaged sperm are not being eliminated," Singh said. "That means some of that damage could be transmitted to the baby." More research is needed to determine just what the risks are. Other reseachers in the study included Richard E. Berger, UW professor of urology. The work was supported by the Paul G. Allen Foundation for Medical Research.


For more information, contact Singh at 206- 685-2060 or narendra@u.washington.edu, or
Muller at 206-543-9504 or cmuller@u.washington.edu

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>