Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals a cellular basis for a male biological clock

26.11.2002


Researchers at the University of Washington have discovered a cellular basis for what many have long suspected: Men, as well as women, have a reproductive clock that ticks down with age.

A recent study revealed that sperm in men older than 35 showed more DNA damage than that of men in the younger age group. In addition, the older men’s bodies appeared less efficient at eliminating the damaged cells, which could pass along problems to offspring.

"When you talk about having children, there has been a lot of focus on maternal age," said Narendra Singh, research assistant professor in the UW Department of Bioengineering and lead researcher on the study. "I think our study shows that paternal age is also relevant."



Charles Muller, with the UW Department of Urology and a collaborator on the study, recently presented the findings at the annual meeting of the American Society for Reproductive Medicine in Seattle.

In the study, researchers recruited 60 men, age 22 to 60, from laboratory and clinical groups. A computerized semen analysis was performed for each of the subjects, looking for breaks in sperm cell DNA and evidence of apoptosis, or cell suicide. Normally, when something goes irreparably wrong in a cell, that cell is programmed to kill itself as a means of protecting the body.

The researchers found that men over age 35 had sperm with lower motility and more highly damaged DNA in the form of DNA double-strand breaks. The older group also had fewer apoptotic cells – an important discovery, Singh said.

"A really key factor that differentiates sperm from other cells in the body is that they do not repair their DNA damage," he said. "Most other cells do."

As a result, the only way to avoid passing sperm DNA damage to a child is for the damaged cells to undergo apoptosis, a process that the study indicates declines with age.

"So in older men, the sperm are accumulating more damage, and those severely damaged sperm are not being eliminated," Singh said. "That means some of that damage could be transmitted to the baby." More research is needed to determine just what the risks are. Other reseachers in the study included Richard E. Berger, UW professor of urology. The work was supported by the Paul G. Allen Foundation for Medical Research.


For more information, contact Singh at 206- 685-2060 or narendra@u.washington.edu, or
Muller at 206-543-9504 or cmuller@u.washington.edu

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>