Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mighty mice are less susceptible to muscular dystrophy gene’s effects

26.11.2002


The Johns Hopkins scientists who first discovered that knocking out a particular muscle gene results in "mighty mice" now report that it also softens the effects of a genetic mutation that causes muscular dystrophy.



The findings, scheduled for the December issue of the Annals of Neurology and currently online, build support for the idea that blocking the activity of that gene, known as myostatin, may one day help treat humans with degenerative muscle diseases.

Working with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans, the scientists discovered that mice without the gene for myostatin had less physical damage to their muscles and were stronger than other mice with the Duchenne mutation.


"’Knocking out’ the myostatin gene isn’t possible for treating patients, but blocking the myostatin protein might be," says senior investigator Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics at Johns Hopkins School of Medicine. "However, myostatin still needs to be studied in people to see if it has the same role in our muscles as it has in mice."

The researchers caution that, even if myostatin does limit muscle growth in people, blocking it would not cure muscular dystrophy or any other degenerative muscle condition because the underlying cause of disease would be unchanged.

"However, increasing muscle mass and strength by blocking myostatin could conceivably delay progression or improve quality of life," notes first author Kathryn Wagner, M.D., Ph.D., assistant professor of neurology at Hopkins.

The Hopkins team bred mice without the myostatin gene with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans. Muscular dystrophy mice completely lacking myostatin were more muscular and stronger than those with myostatin at 3, 6 and 9 months of age, the researchers report. Perhaps most importantly, their muscle tissue appeared to be healthier.

Duchenne muscular dystrophy is the most common muscular dystrophy and the most common inherited lethal disease of childhood, affecting 1 in 3,500 live male births. (The genetic mutation that causes it is found on the X chromosome, and so is "covered up" in girls, who have two X chromosomes.) There’s no good treatment at this time, and few patients survive into adulthood.

Early in the disease in humans, the regenerative capacity of stem cells in muscle, known as satellite cells, keep up with the damage, but eventually the damaging factors win. The result is not just loss of muscle, but also its replacement with non-muscle tissues, essentially scar tissue and fat.

This scarring process, called fibrosis, is also seen in mice with the muscular dystrophy-causing mutation. The Hopkins team reports that loss of myostatin function significantly reduced the amount of fibrosis, suggesting that the muscle regenerative process was improved.

The Hopkins scientists hope to unravel the mechanism of muscle regeneration in mice with and without myostatin, possibly revealing even better targets for improving the process. They also plan to use special genetic manipulations to turn off the myostatin gene in adult mice, rather than at conception, to see if losing myostatin later in the course of muscular dystrophy is also beneficial.

Authors on the study are Wagner, Lee, Alexandra McPherron and Nicole Winik, all of The Johns Hopkins University School of Medicine. Funding was provided by the National Institutes of Health, the Duchenne Parent Project, and the Muscular Dystrophy Association.

Myostatin was licensed by The Johns Hopkins University to MetaMorphix, Inc., and sublicensed to Wyeth Pharmaceuticals, Inc. Lee and McPherron are entitled to a share of sales royalty received by the University from sales of this factor. Lee, McPherron and the University own MetaMorphix stock, which is subject to certain restrictions under University policy. Lee is a paid consultant to MetaMorphix. The terms of these arrangements are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/99519627/START

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>