Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mighty mice are less susceptible to muscular dystrophy gene’s effects

26.11.2002


The Johns Hopkins scientists who first discovered that knocking out a particular muscle gene results in "mighty mice" now report that it also softens the effects of a genetic mutation that causes muscular dystrophy.



The findings, scheduled for the December issue of the Annals of Neurology and currently online, build support for the idea that blocking the activity of that gene, known as myostatin, may one day help treat humans with degenerative muscle diseases.

Working with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans, the scientists discovered that mice without the gene for myostatin had less physical damage to their muscles and were stronger than other mice with the Duchenne mutation.


"’Knocking out’ the myostatin gene isn’t possible for treating patients, but blocking the myostatin protein might be," says senior investigator Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics at Johns Hopkins School of Medicine. "However, myostatin still needs to be studied in people to see if it has the same role in our muscles as it has in mice."

The researchers caution that, even if myostatin does limit muscle growth in people, blocking it would not cure muscular dystrophy or any other degenerative muscle condition because the underlying cause of disease would be unchanged.

"However, increasing muscle mass and strength by blocking myostatin could conceivably delay progression or improve quality of life," notes first author Kathryn Wagner, M.D., Ph.D., assistant professor of neurology at Hopkins.

The Hopkins team bred mice without the myostatin gene with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans. Muscular dystrophy mice completely lacking myostatin were more muscular and stronger than those with myostatin at 3, 6 and 9 months of age, the researchers report. Perhaps most importantly, their muscle tissue appeared to be healthier.

Duchenne muscular dystrophy is the most common muscular dystrophy and the most common inherited lethal disease of childhood, affecting 1 in 3,500 live male births. (The genetic mutation that causes it is found on the X chromosome, and so is "covered up" in girls, who have two X chromosomes.) There’s no good treatment at this time, and few patients survive into adulthood.

Early in the disease in humans, the regenerative capacity of stem cells in muscle, known as satellite cells, keep up with the damage, but eventually the damaging factors win. The result is not just loss of muscle, but also its replacement with non-muscle tissues, essentially scar tissue and fat.

This scarring process, called fibrosis, is also seen in mice with the muscular dystrophy-causing mutation. The Hopkins team reports that loss of myostatin function significantly reduced the amount of fibrosis, suggesting that the muscle regenerative process was improved.

The Hopkins scientists hope to unravel the mechanism of muscle regeneration in mice with and without myostatin, possibly revealing even better targets for improving the process. They also plan to use special genetic manipulations to turn off the myostatin gene in adult mice, rather than at conception, to see if losing myostatin later in the course of muscular dystrophy is also beneficial.

Authors on the study are Wagner, Lee, Alexandra McPherron and Nicole Winik, all of The Johns Hopkins University School of Medicine. Funding was provided by the National Institutes of Health, the Duchenne Parent Project, and the Muscular Dystrophy Association.

Myostatin was licensed by The Johns Hopkins University to MetaMorphix, Inc., and sublicensed to Wyeth Pharmaceuticals, Inc. Lee and McPherron are entitled to a share of sales royalty received by the University from sales of this factor. Lee, McPherron and the University own MetaMorphix stock, which is subject to certain restrictions under University policy. Lee is a paid consultant to MetaMorphix. The terms of these arrangements are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/99519627/START

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>