Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mighty mice are less susceptible to muscular dystrophy gene’s effects

26.11.2002


The Johns Hopkins scientists who first discovered that knocking out a particular muscle gene results in "mighty mice" now report that it also softens the effects of a genetic mutation that causes muscular dystrophy.



The findings, scheduled for the December issue of the Annals of Neurology and currently online, build support for the idea that blocking the activity of that gene, known as myostatin, may one day help treat humans with degenerative muscle diseases.

Working with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans, the scientists discovered that mice without the gene for myostatin had less physical damage to their muscles and were stronger than other mice with the Duchenne mutation.


"’Knocking out’ the myostatin gene isn’t possible for treating patients, but blocking the myostatin protein might be," says senior investigator Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics at Johns Hopkins School of Medicine. "However, myostatin still needs to be studied in people to see if it has the same role in our muscles as it has in mice."

The researchers caution that, even if myostatin does limit muscle growth in people, blocking it would not cure muscular dystrophy or any other degenerative muscle condition because the underlying cause of disease would be unchanged.

"However, increasing muscle mass and strength by blocking myostatin could conceivably delay progression or improve quality of life," notes first author Kathryn Wagner, M.D., Ph.D., assistant professor of neurology at Hopkins.

The Hopkins team bred mice without the myostatin gene with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans. Muscular dystrophy mice completely lacking myostatin were more muscular and stronger than those with myostatin at 3, 6 and 9 months of age, the researchers report. Perhaps most importantly, their muscle tissue appeared to be healthier.

Duchenne muscular dystrophy is the most common muscular dystrophy and the most common inherited lethal disease of childhood, affecting 1 in 3,500 live male births. (The genetic mutation that causes it is found on the X chromosome, and so is "covered up" in girls, who have two X chromosomes.) There’s no good treatment at this time, and few patients survive into adulthood.

Early in the disease in humans, the regenerative capacity of stem cells in muscle, known as satellite cells, keep up with the damage, but eventually the damaging factors win. The result is not just loss of muscle, but also its replacement with non-muscle tissues, essentially scar tissue and fat.

This scarring process, called fibrosis, is also seen in mice with the muscular dystrophy-causing mutation. The Hopkins team reports that loss of myostatin function significantly reduced the amount of fibrosis, suggesting that the muscle regenerative process was improved.

The Hopkins scientists hope to unravel the mechanism of muscle regeneration in mice with and without myostatin, possibly revealing even better targets for improving the process. They also plan to use special genetic manipulations to turn off the myostatin gene in adult mice, rather than at conception, to see if losing myostatin later in the course of muscular dystrophy is also beneficial.

Authors on the study are Wagner, Lee, Alexandra McPherron and Nicole Winik, all of The Johns Hopkins University School of Medicine. Funding was provided by the National Institutes of Health, the Duchenne Parent Project, and the Muscular Dystrophy Association.

Myostatin was licensed by The Johns Hopkins University to MetaMorphix, Inc., and sublicensed to Wyeth Pharmaceuticals, Inc. Lee and McPherron are entitled to a share of sales royalty received by the University from sales of this factor. Lee, McPherron and the University own MetaMorphix stock, which is subject to certain restrictions under University policy. Lee is a paid consultant to MetaMorphix. The terms of these arrangements are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www3.interscience.wiley.com/cgi-bin/abstract/99519627/START

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>