Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Phase transition in bilayers could affect their performance


Phospholipid bilayers that mimic cell membranes in living organisms are of interest as substrates for biosensors and for the controlled release of pharmaceuticals. To better understand how these materials behave with embedded proteins, a necessary first step is to understand how the bilayers respond by themselves.

As will be reported in the Dec. 9 issue of Physical Review Letters (published online Nov. 21), scientists at the University of Illinois at Urbana-Champaign have studied the phase transition in a supported bilayer and discovered some fundamental properties that could affect the material’s performance in various applications.

"Like water turning into ice, bilayers can exist in either a fluid phase or a solid (gel) phase, depending upon temperature," said Andrew Gewirth, a professor of chemistry. "Using a sensitive atomic force microscope, we studied how the microstructure of these bilayers changed during the transformation process."

First, the scientists supported a phospholipid bilayer on a piece of exceptionally smooth mica. Then they studied the properties of this bilayer as it changed phases from fluid to gel and back to fluid. Because touching the surface would destroy the delicate film, the researchers used a noncontact mode in which they oscillated the probe tip in close proximity to the surface, and measured the resulting change in amplitude.

"The atomic force microscope images showed that the fluid to gel phase transition produced substantial tearing of the bilayer, resulting in numerous big, foam-like defects," Gewirth said.

Because the mica substrate was molecularly smooth with no significant surface defects, the scientists concluded that the rips and tears were caused by an intrinsic property of the phase transition itself.

"The gel phase is more dense than the fluid phase," Gewirth said, "so the defects are likely caused by the change in density and, to a lesser extent, by thermal contraction."

As the material solidified, it became highly strained as a consequence of the large density difference between the two phases, Gewirth said. When the membrane was melted again, stress was released in places the scientists hadn’t expected: The melting began in areas other than the defects. In fact, the defects were the last to change back to the fluid phase, because the strain had been removed in the defects as a result of the tearing process.

"The bottom line is that history matters," said Steve Granick, a professor of materials science, chemistry and physics. "The method of preparing the gel phase strongly affects the resulting defect structure, and this in turn has considerable impact on the subsequent gel to fluid transition."

The presence of the defects poses a few problems, but also offers some opportunities, to making and using the bilayers. In biosensors, for example, the defects could affect both device performance and long-term storage characteristics.

"These biosensors would normally be used with the membrane in the fluid phase, but they would be stored in the gel phase," Granick said. "The defects that form as the material solidifies could cause the membrane to respond differently than was expected. As a result, the sensor might not detect the chemical it was designed for."

On the other hand, the defects could be useful as sites for modifying the properties of supported bilayers through the incorporation of additional constituents, the scientists said. In this case, the defects would serve as portals through the membrane, where proteins or other components could be introduced, and then encased by raising the temperature.

"Our experiments have shown that these phospholipid bilayers are a lot more complicated than most people realized," Granick said. "There are many complex materials processing issues that must be considered when making and using them."

Collaborators on the project were graduate student Anne Xie and postdoctoral researcher Ryo Yamada. The U.S. Department of Energy funded the work through a grant to the Frederick Seitz Materials Research Laboratory on the Illinois campus.

Jim Kloeppel, Physical Sciences Editor
(217) 244-1073;

James E. Kloeppel | UIUC news bureau
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>