Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genome sequence of major dairy pathogen

20.11.2002


University of Minnesota researchers, with collaborators at the U. S. Department of Agriculture’s National Animal Disease Center in Ames, Iowa, have completed sequencing the genome of the bacteria that causes Johne’s disease, a major chronic wasting disease found in dairy cattle. The bacterium, Mycobacterium paratuberculosis, is considered one of the most important threats to the health of dairy cattle worldwide and may represent a potential risk to the safety of the milk supply. The gene sequencing will allow researchers to develop new ways of early diagnosis, prevention and treatment of a disease that costs the dairy industry more than $200 million a year. The results of the sequencing analysis are available online at www.pathogenoics.umn.edu, and more about Johne’s disease can be found at www.johnes.org.



"This is a horrible, hard to diagnose disease, largely because we lacked an understanding of the basic genetic makeup of the organism and the tools to differentiate the bacterium from other closely related species," said principal investigator Vivek Kapur, Ph.D., a faculty member in the University of Minnesota Medical School and College of Veterinary Medicine, director of the university’s Advanced Genetic Analysis Center and co-director of the Biomedical Genomics Center. "The genome sequence sheds new light on the genes and biochemical pathways in the bacterium, and the research offers a starting point for defining the mechanisms by which the organism causes disease and helping devise new strategies to detect infected animals and ultimately help control the spread of the organism."

M. paratuberculosis is a slow-growing bacterium that causes a chronic gastrointestinal infection in dairy cattle and other small ruminant species (such as sheep, goat, and deer) and has both serious health and economic consequences to dairy farming worldwide. While the bacterium has been recognized to cause Johne’s disease for more than 100 years, methods for satisfactory diagnosis, treatment and prevention are lacking.


During the sequencing project, scientists discovered several genes that may help differentiate M. paratuberculosis from other closely related bacterial species.

"The genes we’ve identified will serve as targets for the development of new generations of diagnostic tests that are critically needed for the detection and ultimate eradication of the disease," said co-investigator John Bannantine, Ph.D., of the USDA’s National Animal Disease Center.

The analysis of the M. paratuberculosis genome found that its sequence contains nearly 5 million base pairs that are represented on a large circular chromosome with more than 4,500 predicted genes. The researchers also found that the chromosome has a large number of sequences repeated throughout the genome. The identification of all of the genes and key metabolic pathways in this organism may serve to explain some of the unique aspects of the biology of the pathogen, including its slow growth in laboratory culture (it may take up to six months to identify by growth in laboratory culture).

"The slow-growing nature of this bacterium has been an impediment to the diagnosis of infected animals and has also served as a major obstacle for laboratory based research on the pathogen," said Kapur.

The sequencing project represents part of an ambitious "microbial pathogenomics" research program at the University of Minnesota to sequence the genomes of a wide range of human and animal pathogens and use this information as a basis to understand the mechanisms by which they cause disease.


###
The genome project--supported by the USDA through the Cooperative State, Research, Education & Extension Service’s (CSREES) National Research Initiative Competitive Grants Program and the Agricultural Research Service (ARS)--is expected to provide a boost to wide-ranging research efforts for the development of the next generation of antimicrobial agents and vaccines to protect cattle against infection with the bacterium. Recognizing the importance of the disease and the devastating impact on dairy production, the U.S. House Agriculture Appropriations Subcommittee recently approved $20,352,000 for a National Johne’s Disease Management and Testing Program for the current fiscal year. The appropriation is pending approval in the U. S. Senate.

Contacts:

Vivek Kapur (through Tonya Femal)
Tonya Femal, Academic Health Center, (612) 625-2640

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>