Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists crack genome sequence of major dairy pathogen

20.11.2002


University of Minnesota researchers, with collaborators at the U. S. Department of Agriculture’s National Animal Disease Center in Ames, Iowa, have completed sequencing the genome of the bacteria that causes Johne’s disease, a major chronic wasting disease found in dairy cattle. The bacterium, Mycobacterium paratuberculosis, is considered one of the most important threats to the health of dairy cattle worldwide and may represent a potential risk to the safety of the milk supply. The gene sequencing will allow researchers to develop new ways of early diagnosis, prevention and treatment of a disease that costs the dairy industry more than $200 million a year. The results of the sequencing analysis are available online at www.pathogenoics.umn.edu, and more about Johne’s disease can be found at www.johnes.org.



"This is a horrible, hard to diagnose disease, largely because we lacked an understanding of the basic genetic makeup of the organism and the tools to differentiate the bacterium from other closely related species," said principal investigator Vivek Kapur, Ph.D., a faculty member in the University of Minnesota Medical School and College of Veterinary Medicine, director of the university’s Advanced Genetic Analysis Center and co-director of the Biomedical Genomics Center. "The genome sequence sheds new light on the genes and biochemical pathways in the bacterium, and the research offers a starting point for defining the mechanisms by which the organism causes disease and helping devise new strategies to detect infected animals and ultimately help control the spread of the organism."

M. paratuberculosis is a slow-growing bacterium that causes a chronic gastrointestinal infection in dairy cattle and other small ruminant species (such as sheep, goat, and deer) and has both serious health and economic consequences to dairy farming worldwide. While the bacterium has been recognized to cause Johne’s disease for more than 100 years, methods for satisfactory diagnosis, treatment and prevention are lacking.


During the sequencing project, scientists discovered several genes that may help differentiate M. paratuberculosis from other closely related bacterial species.

"The genes we’ve identified will serve as targets for the development of new generations of diagnostic tests that are critically needed for the detection and ultimate eradication of the disease," said co-investigator John Bannantine, Ph.D., of the USDA’s National Animal Disease Center.

The analysis of the M. paratuberculosis genome found that its sequence contains nearly 5 million base pairs that are represented on a large circular chromosome with more than 4,500 predicted genes. The researchers also found that the chromosome has a large number of sequences repeated throughout the genome. The identification of all of the genes and key metabolic pathways in this organism may serve to explain some of the unique aspects of the biology of the pathogen, including its slow growth in laboratory culture (it may take up to six months to identify by growth in laboratory culture).

"The slow-growing nature of this bacterium has been an impediment to the diagnosis of infected animals and has also served as a major obstacle for laboratory based research on the pathogen," said Kapur.

The sequencing project represents part of an ambitious "microbial pathogenomics" research program at the University of Minnesota to sequence the genomes of a wide range of human and animal pathogens and use this information as a basis to understand the mechanisms by which they cause disease.


###
The genome project--supported by the USDA through the Cooperative State, Research, Education & Extension Service’s (CSREES) National Research Initiative Competitive Grants Program and the Agricultural Research Service (ARS)--is expected to provide a boost to wide-ranging research efforts for the development of the next generation of antimicrobial agents and vaccines to protect cattle against infection with the bacterium. Recognizing the importance of the disease and the devastating impact on dairy production, the U.S. House Agriculture Appropriations Subcommittee recently approved $20,352,000 for a National Johne’s Disease Management and Testing Program for the current fiscal year. The appropriation is pending approval in the U. S. Senate.

Contacts:

Vivek Kapur (through Tonya Femal)
Tonya Femal, Academic Health Center, (612) 625-2640

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>