Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering the tree of life

19.11.2002


NSF awards grants to discover the relationships of 1.75 million species

One of the most profound ideas to emerge in modern science is Charles Darwin’s concept that all of life, from the smallest microorganism to the largest vertebrate, is connected through genetic relatedness in a vast genealogy. This "Tree of Life" summarizes all we know about biological diversity and underpins much of modern biology, yet many of its branches remain poorly known and unresolved.

To help scientists discover what Darwin described as the tree’s "everbranching and beautiful ramifications," the National Science Foundation (NSF) has awarded $17 million in "Assembling the Tree of Life" grants to researchers at more than 25 institutions. Their studies range from investigations of entire pieces of DNA to assemble the bacterial branches; to the study of the origins of land plants from algae; to understanding the most diverse group of terrestrial predators, the spiders; to the diversity of fungi and parasitic roundworms; to the relationships of birds and dinosaurs.

"Despite the enormity of the task," said Quentin Wheeler, director of NSF’s division of environmental biology, which funded the awards, "now is the time to reconstruct the tree of life. The conceptual, computational and technological tools are available to rapidly resolve most, if not all, major branches of the tree of life. At the same time, progress in many research areas from genomics to evolution and development is currently encumbered by the lack of a rigorous historical framework to guide research." Scientists estimate that the 1.75 million known species are only 10 percent of the total species on earth, and that many of those species will disappear in the decades ahead. Learning about these species and their evolutionary history is epic in its scope, spanning all the life forms of an entire planet over its several billion year history, said Wheeler.

Why is assembling the tree of life so important? The tree is a picture of historical relationships that explains all similarities and differences among plants, animals and microorganisms. Because it explains biological diversity, the Tree of Life has proven useful in many fields, such as choosing experimental systems for biological research, determining which genes are common to many kinds of organisms and which are unique, tracking the origin and spread of emerging diseases and their vectors, bio-prospecting for pharmaceutical and agrochemical products, developing data bases for genetic information, and evaluating risk factors for species conservation and ecosystem restoration.

The Assembling the Tree of Life grants provide support for large multi-investigator, multi-institutional, international teams of scientists who can combine expertise and data sources, from paleontology to morphology, developmental biology, and molecular biology, says Wheeler. The awards will also involve developing software for improved visualization and analysis of extremely large data sets, and outreach and education programs in comparative phylogenetic biology and paleontology, emphasizing new training activities, informal science education, and Internet resources and dissemination.

For a list of the Assembling the Tree of Life grants, see: http://www.nsf.gov/bio/pubs/awards/atol_02.htm



Media Contact:
Cheryl Dybas
(703) 292-8070/cdybas@nsf.gov


Program Contact:
Diana Lipscomb
(703) 292-8481/dlipscom@nsf.gov

Cheryl Dybas | NSF News
Further information:
http://www.nsf.gov/bio/pubs/awards/atol_02.htm

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>