Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering the tree of life

19.11.2002


NSF awards grants to discover the relationships of 1.75 million species

One of the most profound ideas to emerge in modern science is Charles Darwin’s concept that all of life, from the smallest microorganism to the largest vertebrate, is connected through genetic relatedness in a vast genealogy. This "Tree of Life" summarizes all we know about biological diversity and underpins much of modern biology, yet many of its branches remain poorly known and unresolved.

To help scientists discover what Darwin described as the tree’s "everbranching and beautiful ramifications," the National Science Foundation (NSF) has awarded $17 million in "Assembling the Tree of Life" grants to researchers at more than 25 institutions. Their studies range from investigations of entire pieces of DNA to assemble the bacterial branches; to the study of the origins of land plants from algae; to understanding the most diverse group of terrestrial predators, the spiders; to the diversity of fungi and parasitic roundworms; to the relationships of birds and dinosaurs.

"Despite the enormity of the task," said Quentin Wheeler, director of NSF’s division of environmental biology, which funded the awards, "now is the time to reconstruct the tree of life. The conceptual, computational and technological tools are available to rapidly resolve most, if not all, major branches of the tree of life. At the same time, progress in many research areas from genomics to evolution and development is currently encumbered by the lack of a rigorous historical framework to guide research." Scientists estimate that the 1.75 million known species are only 10 percent of the total species on earth, and that many of those species will disappear in the decades ahead. Learning about these species and their evolutionary history is epic in its scope, spanning all the life forms of an entire planet over its several billion year history, said Wheeler.

Why is assembling the tree of life so important? The tree is a picture of historical relationships that explains all similarities and differences among plants, animals and microorganisms. Because it explains biological diversity, the Tree of Life has proven useful in many fields, such as choosing experimental systems for biological research, determining which genes are common to many kinds of organisms and which are unique, tracking the origin and spread of emerging diseases and their vectors, bio-prospecting for pharmaceutical and agrochemical products, developing data bases for genetic information, and evaluating risk factors for species conservation and ecosystem restoration.

The Assembling the Tree of Life grants provide support for large multi-investigator, multi-institutional, international teams of scientists who can combine expertise and data sources, from paleontology to morphology, developmental biology, and molecular biology, says Wheeler. The awards will also involve developing software for improved visualization and analysis of extremely large data sets, and outreach and education programs in comparative phylogenetic biology and paleontology, emphasizing new training activities, informal science education, and Internet resources and dissemination.

For a list of the Assembling the Tree of Life grants, see: http://www.nsf.gov/bio/pubs/awards/atol_02.htm



Media Contact:
Cheryl Dybas
(703) 292-8070/cdybas@nsf.gov


Program Contact:
Diana Lipscomb
(703) 292-8481/dlipscom@nsf.gov

Cheryl Dybas | NSF News
Further information:
http://www.nsf.gov/bio/pubs/awards/atol_02.htm

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>