Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover role of two genes involved in cholesterol excretion

19.11.2002


Two specific genes involved in cholesterol transport are required for the most common way excess cholesterol is expelled from our bodies, according to scientists at UT Southwestern Medical Center at Dallas.



The genes, the researchers report, are essential for efficient secretion of cholesterol into the bile, which is the major route that cholesterol exits the body. The discovery sheds new light on potential therapies that could play an important role in reducing high cholesterol, a major risk factor of atherosclerotic diseases, such as coronary heart disease and stroke.

The new findings are reported in this week’s issue of the Proceedings of the National Academy of Sciences.


"The disruption of the two genes, Abcg5 and Abcg8, reveals their crucial role in biliary cholesterol secretion," said Dr. Liqing Yu, an instructor in the Eugene McDermott Center for Human Growth and Development and in molecular genetics and lead author of the study. "In humans and mice, the secretion of cholesterol into the bile is essential for maintaining cholesterol homeostasis and constitutes a major defense against the accumulation of dietary cholesterol in blood and tissues."

Dr. Helen Hobbs, senior author of the study, said, "By activating or upregulating Abcg5 and Abcg8 you could theoretically reduce cholesterol in the body by increasing cholesterol transport into the bile and limiting cholesterol absorption. This may also reduce cholesterol in the blood." Hobbs directs the Eugene McDermott Center for Human Growth and Development and the Donald W. Reynolds Cardiovascular Clinical Research Center. She also is an investigator in UT Southwestern’s Howard Hughes Medical Institute.

The researchers uncovered this critical pathway by studying mice that lacked the genes.

When researchers fed the mice high cholesterol diets, "We discovered that the fatty liver was developed due to a massive accumulation of cholesterol," Yu said. "We think this happens because the dietary cholesterol cannot be efficiently secreted into the bile, but it is accumulated in the liver and plasma when Abcg5 and Abcg8 are disrupted."

Liver and plasma cholesterol levels were increased by as much as 18-fold and 2.4-fold, respectively, in the mice after they ate a cholesterol-rich diet. Disruption of the two genes also resulted in a 30-fold increase in plasma levels of sitosterol, the major plant sterol, and a two- to threefold increase in fractional absorption of dietary plant sterols.

"Plant sterols are similar to cholesterol, structurally, and in the absence of Abcg5 and Abcg8 the compounds accumulate in the body, which leads to a rare inherited disease called sitosterolemia," Yu said. "Individuals with this disease have dramatically increased plasma plant sterol levels, which is associated with premature atherosclerotic coronary heart disease."

UT Southwestern researchers, in conjunction with researchers at Tularik Inc., discovered the two genes in 2000.

Before scientists identified the genes, the molecular mechanism by which dietary cholesterol is absorbed and the mechanisms by which cholesterol and other sterols are secreted into the bile were not known, Hobbs said.

"The actual discovery of the two genes in 2000 led to a better understanding of two important pathways of cholesterol metabolism," she said.


Other UT Southwestern researchers involved in the study were Dr. Jonathan Cohen, associate professor of internal medicine; Dr. Robert Hammer, professor of biochemistry; and Dr. Jia Li-Hawkins, now with Pfizer. Researchers from the University of Bonn in Germany also contributed.

The studies were supported by The Howard Hughes Medical Institute, the National Institutes of Health, the Perot Fund; the W. M. Keck Foundation; and the Donald W. Reynolds Cardiovascular Clinical Research Center.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then go to "Receive our News" to subscribe.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://www3.utsouthwestern.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>