Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover role of two genes involved in cholesterol excretion

19.11.2002


Two specific genes involved in cholesterol transport are required for the most common way excess cholesterol is expelled from our bodies, according to scientists at UT Southwestern Medical Center at Dallas.



The genes, the researchers report, are essential for efficient secretion of cholesterol into the bile, which is the major route that cholesterol exits the body. The discovery sheds new light on potential therapies that could play an important role in reducing high cholesterol, a major risk factor of atherosclerotic diseases, such as coronary heart disease and stroke.

The new findings are reported in this week’s issue of the Proceedings of the National Academy of Sciences.


"The disruption of the two genes, Abcg5 and Abcg8, reveals their crucial role in biliary cholesterol secretion," said Dr. Liqing Yu, an instructor in the Eugene McDermott Center for Human Growth and Development and in molecular genetics and lead author of the study. "In humans and mice, the secretion of cholesterol into the bile is essential for maintaining cholesterol homeostasis and constitutes a major defense against the accumulation of dietary cholesterol in blood and tissues."

Dr. Helen Hobbs, senior author of the study, said, "By activating or upregulating Abcg5 and Abcg8 you could theoretically reduce cholesterol in the body by increasing cholesterol transport into the bile and limiting cholesterol absorption. This may also reduce cholesterol in the blood." Hobbs directs the Eugene McDermott Center for Human Growth and Development and the Donald W. Reynolds Cardiovascular Clinical Research Center. She also is an investigator in UT Southwestern’s Howard Hughes Medical Institute.

The researchers uncovered this critical pathway by studying mice that lacked the genes.

When researchers fed the mice high cholesterol diets, "We discovered that the fatty liver was developed due to a massive accumulation of cholesterol," Yu said. "We think this happens because the dietary cholesterol cannot be efficiently secreted into the bile, but it is accumulated in the liver and plasma when Abcg5 and Abcg8 are disrupted."

Liver and plasma cholesterol levels were increased by as much as 18-fold and 2.4-fold, respectively, in the mice after they ate a cholesterol-rich diet. Disruption of the two genes also resulted in a 30-fold increase in plasma levels of sitosterol, the major plant sterol, and a two- to threefold increase in fractional absorption of dietary plant sterols.

"Plant sterols are similar to cholesterol, structurally, and in the absence of Abcg5 and Abcg8 the compounds accumulate in the body, which leads to a rare inherited disease called sitosterolemia," Yu said. "Individuals with this disease have dramatically increased plasma plant sterol levels, which is associated with premature atherosclerotic coronary heart disease."

UT Southwestern researchers, in conjunction with researchers at Tularik Inc., discovered the two genes in 2000.

Before scientists identified the genes, the molecular mechanism by which dietary cholesterol is absorbed and the mechanisms by which cholesterol and other sterols are secreted into the bile were not known, Hobbs said.

"The actual discovery of the two genes in 2000 led to a better understanding of two important pathways of cholesterol metabolism," she said.


Other UT Southwestern researchers involved in the study were Dr. Jonathan Cohen, associate professor of internal medicine; Dr. Robert Hammer, professor of biochemistry; and Dr. Jia Li-Hawkins, now with Pfizer. Researchers from the University of Bonn in Germany also contributed.

The studies were supported by The Howard Hughes Medical Institute, the National Institutes of Health, the Perot Fund; the W. M. Keck Foundation; and the Donald W. Reynolds Cardiovascular Clinical Research Center.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then go to "Receive our News" to subscribe.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://www3.utsouthwestern.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>