Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover role of two genes involved in cholesterol excretion

19.11.2002


Two specific genes involved in cholesterol transport are required for the most common way excess cholesterol is expelled from our bodies, according to scientists at UT Southwestern Medical Center at Dallas.



The genes, the researchers report, are essential for efficient secretion of cholesterol into the bile, which is the major route that cholesterol exits the body. The discovery sheds new light on potential therapies that could play an important role in reducing high cholesterol, a major risk factor of atherosclerotic diseases, such as coronary heart disease and stroke.

The new findings are reported in this week’s issue of the Proceedings of the National Academy of Sciences.


"The disruption of the two genes, Abcg5 and Abcg8, reveals their crucial role in biliary cholesterol secretion," said Dr. Liqing Yu, an instructor in the Eugene McDermott Center for Human Growth and Development and in molecular genetics and lead author of the study. "In humans and mice, the secretion of cholesterol into the bile is essential for maintaining cholesterol homeostasis and constitutes a major defense against the accumulation of dietary cholesterol in blood and tissues."

Dr. Helen Hobbs, senior author of the study, said, "By activating or upregulating Abcg5 and Abcg8 you could theoretically reduce cholesterol in the body by increasing cholesterol transport into the bile and limiting cholesterol absorption. This may also reduce cholesterol in the blood." Hobbs directs the Eugene McDermott Center for Human Growth and Development and the Donald W. Reynolds Cardiovascular Clinical Research Center. She also is an investigator in UT Southwestern’s Howard Hughes Medical Institute.

The researchers uncovered this critical pathway by studying mice that lacked the genes.

When researchers fed the mice high cholesterol diets, "We discovered that the fatty liver was developed due to a massive accumulation of cholesterol," Yu said. "We think this happens because the dietary cholesterol cannot be efficiently secreted into the bile, but it is accumulated in the liver and plasma when Abcg5 and Abcg8 are disrupted."

Liver and plasma cholesterol levels were increased by as much as 18-fold and 2.4-fold, respectively, in the mice after they ate a cholesterol-rich diet. Disruption of the two genes also resulted in a 30-fold increase in plasma levels of sitosterol, the major plant sterol, and a two- to threefold increase in fractional absorption of dietary plant sterols.

"Plant sterols are similar to cholesterol, structurally, and in the absence of Abcg5 and Abcg8 the compounds accumulate in the body, which leads to a rare inherited disease called sitosterolemia," Yu said. "Individuals with this disease have dramatically increased plasma plant sterol levels, which is associated with premature atherosclerotic coronary heart disease."

UT Southwestern researchers, in conjunction with researchers at Tularik Inc., discovered the two genes in 2000.

Before scientists identified the genes, the molecular mechanism by which dietary cholesterol is absorbed and the mechanisms by which cholesterol and other sterols are secreted into the bile were not known, Hobbs said.

"The actual discovery of the two genes in 2000 led to a better understanding of two important pathways of cholesterol metabolism," she said.


Other UT Southwestern researchers involved in the study were Dr. Jonathan Cohen, associate professor of internal medicine; Dr. Robert Hammer, professor of biochemistry; and Dr. Jia Li-Hawkins, now with Pfizer. Researchers from the University of Bonn in Germany also contributed.

The studies were supported by The Howard Hughes Medical Institute, the National Institutes of Health, the Perot Fund; the W. M. Keck Foundation; and the Donald W. Reynolds Cardiovascular Clinical Research Center.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then go to "Receive our News" to subscribe.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://www3.utsouthwestern.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>