Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover role of two genes involved in cholesterol excretion

19.11.2002


Two specific genes involved in cholesterol transport are required for the most common way excess cholesterol is expelled from our bodies, according to scientists at UT Southwestern Medical Center at Dallas.



The genes, the researchers report, are essential for efficient secretion of cholesterol into the bile, which is the major route that cholesterol exits the body. The discovery sheds new light on potential therapies that could play an important role in reducing high cholesterol, a major risk factor of atherosclerotic diseases, such as coronary heart disease and stroke.

The new findings are reported in this week’s issue of the Proceedings of the National Academy of Sciences.


"The disruption of the two genes, Abcg5 and Abcg8, reveals their crucial role in biliary cholesterol secretion," said Dr. Liqing Yu, an instructor in the Eugene McDermott Center for Human Growth and Development and in molecular genetics and lead author of the study. "In humans and mice, the secretion of cholesterol into the bile is essential for maintaining cholesterol homeostasis and constitutes a major defense against the accumulation of dietary cholesterol in blood and tissues."

Dr. Helen Hobbs, senior author of the study, said, "By activating or upregulating Abcg5 and Abcg8 you could theoretically reduce cholesterol in the body by increasing cholesterol transport into the bile and limiting cholesterol absorption. This may also reduce cholesterol in the blood." Hobbs directs the Eugene McDermott Center for Human Growth and Development and the Donald W. Reynolds Cardiovascular Clinical Research Center. She also is an investigator in UT Southwestern’s Howard Hughes Medical Institute.

The researchers uncovered this critical pathway by studying mice that lacked the genes.

When researchers fed the mice high cholesterol diets, "We discovered that the fatty liver was developed due to a massive accumulation of cholesterol," Yu said. "We think this happens because the dietary cholesterol cannot be efficiently secreted into the bile, but it is accumulated in the liver and plasma when Abcg5 and Abcg8 are disrupted."

Liver and plasma cholesterol levels were increased by as much as 18-fold and 2.4-fold, respectively, in the mice after they ate a cholesterol-rich diet. Disruption of the two genes also resulted in a 30-fold increase in plasma levels of sitosterol, the major plant sterol, and a two- to threefold increase in fractional absorption of dietary plant sterols.

"Plant sterols are similar to cholesterol, structurally, and in the absence of Abcg5 and Abcg8 the compounds accumulate in the body, which leads to a rare inherited disease called sitosterolemia," Yu said. "Individuals with this disease have dramatically increased plasma plant sterol levels, which is associated with premature atherosclerotic coronary heart disease."

UT Southwestern researchers, in conjunction with researchers at Tularik Inc., discovered the two genes in 2000.

Before scientists identified the genes, the molecular mechanism by which dietary cholesterol is absorbed and the mechanisms by which cholesterol and other sterols are secreted into the bile were not known, Hobbs said.

"The actual discovery of the two genes in 2000 led to a better understanding of two important pathways of cholesterol metabolism," she said.


Other UT Southwestern researchers involved in the study were Dr. Jonathan Cohen, associate professor of internal medicine; Dr. Robert Hammer, professor of biochemistry; and Dr. Jia Li-Hawkins, now with Pfizer. Researchers from the University of Bonn in Germany also contributed.

The studies were supported by The Howard Hughes Medical Institute, the National Institutes of Health, the Perot Fund; the W. M. Keck Foundation; and the Donald W. Reynolds Cardiovascular Clinical Research Center.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then go to "Receive our News" to subscribe.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/
http://www3.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>