Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find insects can alter plant chemistry to help them find mates

19.11.2002


Each spring, amid the decaying rubble of dead prairie plants, emerging male gall wasps find mates by calling upon the chemistry prowess of their predecessors, entomologists scouring Central Illinois have discovered.


Gall wasp larvae feeding inside a stem of Silphium terebinthinacem (prairie dock)
Photos provided by John Tooker.


A female gall wasp Antistrophus rufus
Photos provided by John Tooker.



In the Proceedings of the National Academy of Sciences, they report that as adult gall wasps (Antistrophus rufus) feed in warm weather, they change the ratio of plant chemicals so that males emerging after the winter season can recognize when they are on the right stems at the right time. The study is being published in advance online the week of Nov. 18-22.

The finding is the first to suggest that insects can alter the chemical composition of plants for the purpose of mate location, said Lawrence M. Hanks, a professor at the University of Illinois at Urbana-Champaign.


The study also provides new insight on plant-insect ecology in widely diverse prairie habitats, which in Illinois have dwindled because of agriculture and urban growth to less than 1 percent of the acreage they once covered.

"Prairies hold unique plants and insects that are not thoroughly understood," Hanks said. "This study is important because it shows that insects can influence plants for their own needs, using a substitute for sex pheromones."

Specifically, the researchers found that male gall wasps respond to uneven chemical ratios in the plants. "As the insects feed, they change the plant chemistry, providing cues that help male wasps find females," Hanks said. "This is interesting, because the females are inside the stems, so they are not producing pheromones. It’s a plant’s volatile chemicals that attract males."

In essence, males smell their way to a mate. "They get chemical cues off the surface of the plant," said co-author John F. Tooker, a doctoral student in entomology at Illinois. "It’s called a short-range volatile cue."

"We don’t know how far away they can be and still smell it," Tooker said, "but once they are on the right plant the males antennate the surface and begin looking for mates." This rattling of antennae as they walk along the stem indicates they are on the right plant, "and this behavior helps them to find spots where female wasps will emerge."

"The males find these sites and defend them," he said. The males will head-butt one another, forcing some to leave. Others are driven off by wind or predators, such as spiders and beetles, requiring the wasps to find new stems amid the assorted plant debris.

Males, they found, only choose plant species that are the same as those from which they had emerged. The researchers monitored activity around two commonly found prairie plants: prairie dock (Silphium terebinthinaceum) and compass plant (Silphium laciniatum).

Winged flea-sized adult gall wasps live barely five days in the field, but they emerge continually over a 30-day period. They spend nine to 10 months as larvae living inconspicuously inside of the plants. Adult females emerge from dead stems of the plants, mate and lay eggs in live plant stems, forming galls that protect the larvae and provide nourishment. In the spring, males emerge first from the rotting stems.

Collaborator Wilfried A. Koenig, an organic chemist at the University of Hamburg in Germany, analyzed stem samples collected by Tooker and Hanks. The samples with galls had different enantiomeric ratios of monoterpenes than did the plants without galls.

It is the mix of two chemicals -- alpha and beta pinenes -- that males recognize. "Non-galled plants have a ratio of about 50-50, while galled plants have skewed ratios. If males find a stem with a 50-50 ratio," Tooker said, "they will move on. If they find a stem with a 70-30 or a 100-0 ratio, they likely will stay and find females emerging from it."

Tooker, who is seeking to understand how population control works for the wasps in natural prairie habitats, said the discovery was unexpected. "The botanists know all about the plants we are studying, but we donÕt know much about the insects in prairies," he said. "Gall wasps are very small and easy to overlook. Unless you are in the fields at the right period of the right season you are never going to see them."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>