Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproduction of fungus depends on ...

15.11.2002


A research team of the Department of Applied Chemistry of the University of the Basque Country has been studying the reproduction of funguses. In the laboratory of Unai Ugalde, they have studied and identified a molecule that is essential in the growing of fungus.



It is already known that funguses grow in several places, but the factors that affect their growing are still unknown. Funguses grow through hypha, that is, small filamentous. However, in certain situations they produce spores that later are expanded through the air. Nevertheless, in order to form spores, there must be certain conditions in the environment. For example, wind is essential in order to produce an effective reproduction of fungus, but nutrients, light and other factors are also necessary. Scientists have been studying since many years trying to discover which are those other factors, but there was still a factor to be discovered.

Eight years ago, the team of Unai Ugalde proposed that the missing factor to explain the reproduction of funguses was a molecule that was produced by the fungus itself, but it was unknown. However now, after so many years of research, they have found out the molecule and its structure. This molecule is produced in very small quantities and for that reason it has been necessary to use very complex working methodologies in order to identify it. Furthermore, this molecule has been the first one of a molecule family that was not identified yet with similar functions to hormones.


That molecule presented in the magazine has been called as conidiogen. This molecule is effective in very low concentrations and that is its main characteristic. For example, antibiotics produced by funguses usually appear in larger quantities, approximately a thousand times more than the conidiogen.

This type of molecules can have a significant effect in the control of fungus reproduction. The research of those molecules can lead to drugs to cure diseases caused by funguses or to the industrial reproduction of funguses, etc. Therefore, Ugalde confirmed the intention to continue working in the study of those types of molecules.

Garazi Andonegi | alfa
Further information:
http://ec.asm.org/cgi/content/abstract/1/5/823

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>