Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Computers, Scientists Successfully Predict Evolution of E. Coli Bacteria

15.11.2002


For more than a decade, researchers have been trying to create accurate computer models of Escherichia coli (E. coli), a bacterium that makes headlines for its varied roles in food poisoning, drug manufacture and biological research.


Photomicrograph of E. coli.

Credit: Image courtesy of National Institute of Allergy and Infectious Diseases, National Institutes of Health



By combining laboratory data with recently completed genetic databases, researchers can craft digital colonies of organisms that mimic, and even predict, some behaviors of living cells to an accuracy of about 75 percent.

Now, NSF-supported researchers at the University of California at San Diego have created a computer model that accurately predicts how E. coli metabolic systems adapt and evolve when the bacteria are placed under environmental constraints. Bernhard Palsson, Rafael Ibarra (now at GenVault Corporation in Carlsbad, California) and Jeremy Edwards (now at the University of Delaware at Newark) report their findings in the November 14 issue of Nature.


"Ours is the only existing genome-scale model of E. coli," says Palsson. In addition, while many approaches to genetics experiments "knock out" individual genes and track the results, the new model takes a whole-system approach. Changing one aspect of a genetic code could be irrelevant if an organism adapts and evolves, says Palsson. The constraints-based models allow the E. coli to evolve more naturally along several possible paths.

Scientists may use the approach to design new bacterial strains on the computer by controlling environmental parameters and predicting how microorganisms adapt over time. Then, by recreating the environment in a laboratory, researchers may be able to coax living bacteria into evolving into the new strain.

The resulting strains may be more efficient at producing insulin or cancer-fighting drugs than existing bacterial colonies engineered by researchers using standard techniques.

"Now we have a better tool to predict how bacteria evolve and adapt to changes," says National Science Foundation program director Fred Heineken. "As a result, this constraints-based approach could lead to better custom-built organisms," he says.

The researchers based their digital bacteria on earlier laboratory studies and E. coli genome sequences, detailed genetic codes that have been augmented with experimental information about the function of every gene.

Such digital models are known as "in silico" experiments -- a play on words referring to biological studies conducted on a computer.

In the first days of testing on living organisms, the bacteria did not adapt into the strain predicted by the simulation. Yet, with more time (40 days, or 500-1000 generations), the E. coli growing in the laboratory flasks adapted and evolved into a strain like the one the in silico model predicted.

"The novelty of the constraints-based approach is that it accounts for changes in cellular properties over time," says Palsson. "Fortunately," he adds, "the other advantage is that it actually works surprisingly often."

For many years, drug manufacturers have manipulated the genetic code in E. coli strains, creating species that can produce important substances, such as the hormone insulin for use by people with diabetes or the experimental cancer drug angiostatin.

Using the new constraints-based techniques Palsson and his colleagues developed, drug manufacturers and bioprocessing companies could use computers to determine the genetic code that could yield the most efficient and productive versions of E. coli, and then use adaptive evolution to create bacterial strains that have the desired properties.

Says Palsson, "This development potentially opens up a revolutionary new direction in the design of new production strains." In addition, says Palsson, "now that we have gained a greater understanding of this process in E. coli, developing similar simulations of other organisms should take less time."

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov/
http://www.nsf.gov/od/lpa/news/02/pr0292.htm

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>