Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Show How Basic Biology Understanding Can Further Genetic Engineering

14.11.2002


A step to further understanding of the process whereby genes are turned on and off in living organisms has been achieved by a team of researchers at the Hebrew University-Hadassah Medical School. Understanding of this process has substantial consequences for furthering the use of medical genetic engineering to grow new tissue to replace damaged or defective organs or to halt the growth of undesirable tumors.

The achievement is described in an article in the current issue of Nature magazine, written by Howard Cedar, the Harry and Helen L. Brenner Professor of Molecular Biology at the Medical School, together with Jianmin Zhang, Xu Feng, both graduate students from China; graduate student Tamar Hashimshony; and senior researcher Dr. Ilana Keshet. The article is entitled “Establishment of Transcriptional Competence in Early and late S-Phase.”

Generally speaking, said Prof. Cedar, a winner of the Israel Prize in biology, there are two kinds of genes in every cell—those which control the “housekeeping” duties which are necessary to keep all cells functioning, and specific genes which give each tissue its unique properties.



Since a complete set of genes exists in every cell, no matter where it is located in a given organism, most tissue specific genes are actually in a dormant (unexpressed) state. Only those tissue specific genes needed for a particular cell type (liver, heart, brain, etc.) are activated along with the housekeeping genes.

How are some genes kept on while others are turned off? The new studies from Prof. Cedar’s laboratory suggest that this occurs during the process of gene duplication that takes place prior to cell division. Housekeeping genes get copied early during a unique “window of opportunity” which makes them active, while other genes are copied later, and as a result are mostly doomed to inactivity. Thus, in a sense, each cell knows how to pass on to the next generation both the genes themselves, as well as the instructions for setting up their state of activity or inactivity. This concept was actually suggested 25 years ago, but the Hebrew University-Hadassah researchers are the first to prove it.

These new findings provide fundamental information important for understanding how the embryo develops and for deciphering the genetic defects in cancer. This will also help scientists develop better methods for therapeutic genetic engineering by providing the technology required to insure that when genes are inserted they will always be active.

Jerry Barach | Hebrew University

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>