Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Show How Basic Biology Understanding Can Further Genetic Engineering

14.11.2002


A step to further understanding of the process whereby genes are turned on and off in living organisms has been achieved by a team of researchers at the Hebrew University-Hadassah Medical School. Understanding of this process has substantial consequences for furthering the use of medical genetic engineering to grow new tissue to replace damaged or defective organs or to halt the growth of undesirable tumors.

The achievement is described in an article in the current issue of Nature magazine, written by Howard Cedar, the Harry and Helen L. Brenner Professor of Molecular Biology at the Medical School, together with Jianmin Zhang, Xu Feng, both graduate students from China; graduate student Tamar Hashimshony; and senior researcher Dr. Ilana Keshet. The article is entitled “Establishment of Transcriptional Competence in Early and late S-Phase.”

Generally speaking, said Prof. Cedar, a winner of the Israel Prize in biology, there are two kinds of genes in every cell—those which control the “housekeeping” duties which are necessary to keep all cells functioning, and specific genes which give each tissue its unique properties.



Since a complete set of genes exists in every cell, no matter where it is located in a given organism, most tissue specific genes are actually in a dormant (unexpressed) state. Only those tissue specific genes needed for a particular cell type (liver, heart, brain, etc.) are activated along with the housekeeping genes.

How are some genes kept on while others are turned off? The new studies from Prof. Cedar’s laboratory suggest that this occurs during the process of gene duplication that takes place prior to cell division. Housekeeping genes get copied early during a unique “window of opportunity” which makes them active, while other genes are copied later, and as a result are mostly doomed to inactivity. Thus, in a sense, each cell knows how to pass on to the next generation both the genes themselves, as well as the instructions for setting up their state of activity or inactivity. This concept was actually suggested 25 years ago, but the Hebrew University-Hadassah researchers are the first to prove it.

These new findings provide fundamental information important for understanding how the embryo develops and for deciphering the genetic defects in cancer. This will also help scientists develop better methods for therapeutic genetic engineering by providing the technology required to insure that when genes are inserted they will always be active.

Jerry Barach | Hebrew University

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>