Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting bacteria in space: The good, the bad and the unknown

14.11.2002


Bacteria in space, beware. New technology to monitor and identify bacteria is in the works.



Dr. George E. Fox and Dr. Richard Willson, researchers on the National Space Biomedical Research Institute’s immunology and infection team, have developed a new technology to characterize unknown bacteria. Its immediate application will be for identifying bacteria in space, but it will eventually aid in diagnosing medical conditions and detecting biological hazards on Earth.

“Understanding the bacterial environment is important for astronauts’ health,” said Fox, professor of biology and biochemistry at University of Houston. “Astronauts spend months in the same quarters, breathe recycled air and potentially drink recycled water; conditions that create a bacterial breeding ground. Additionally, the space environment might also have some unexpected health considerations.”


Studies have shown that space conditions suppress the human immune system, making the body more susceptible to infection. Further, weightlessness and higher levels of radiation may increase the mutation rate in bacteria. This could result in making some organisms more resistant to antibiotics or perhaps causing others that are normally harmless to become infectious.

“Because of space’s unidentified effects on bacteria and the immune system, we don’t know which organisms will cause problems,” Fox said. “However, we have developed a technique to determine an organism’s approximate identity.”

Their approach is based off the bacterial tree of life, which is arranged according to similarities in organisms’ DNA sequences. Organisms whose DNA sequences are closely matched are more closely related than organisms whose DNA sequences are less similar. Fox and Willson have developed a method to identify the DNA sequences that are unique to small groups of bacteria.

“Current detection systems mandate that you test for an exact organism. If a problem organism is similar but not identical to the organism you are testing for, the test will show up negative,” Fox said. “However, with our system, astronauts would be able to pinpoint an organism’s family and significantly narrow down the possibilities of its identity.”

Once Fox and Willson’s device identifies the problem organism, scientists can predict the bacteria’s source, like a faulty air filter or a water purifier, and fix the defective instrument for future missions.

Any kind of bacterial buildup should be avoided in the spacecraft.

“We are not specifically looking for deadly mutated bacteria,” Fox said. “We are more concerned about preventing everyday infections because, if you get sick in space, you don’t have a hospital around the corner for treatment. Our goal is to avoid infections with routine monitoring to keep bacteria levels low in the first place.”

The routine monitoring of bacterial levels is the second component of Fox and Willson’s research. Because of limited laboratory space and chemical availability in spacecrafts, they are designing an easy-to-use monitoring method for bacteria levels. Astronauts would filter the air or water, or swab a surface, to obtain the bacterial sample, and then they would test the sample for high levels of certain organisms that would indicate contamination.

“The tool will provide an early warning that the air or water purification system might not be working properly, allowing for needed repairs,” said Fox. “The routine monitoring system and the bacterial identification device will help astronauts stay healthy during their time in space.”


The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.


Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=39
http://www.nsbri.org/

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>