Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting bacteria in space: The good, the bad and the unknown

14.11.2002


Bacteria in space, beware. New technology to monitor and identify bacteria is in the works.



Dr. George E. Fox and Dr. Richard Willson, researchers on the National Space Biomedical Research Institute’s immunology and infection team, have developed a new technology to characterize unknown bacteria. Its immediate application will be for identifying bacteria in space, but it will eventually aid in diagnosing medical conditions and detecting biological hazards on Earth.

“Understanding the bacterial environment is important for astronauts’ health,” said Fox, professor of biology and biochemistry at University of Houston. “Astronauts spend months in the same quarters, breathe recycled air and potentially drink recycled water; conditions that create a bacterial breeding ground. Additionally, the space environment might also have some unexpected health considerations.”


Studies have shown that space conditions suppress the human immune system, making the body more susceptible to infection. Further, weightlessness and higher levels of radiation may increase the mutation rate in bacteria. This could result in making some organisms more resistant to antibiotics or perhaps causing others that are normally harmless to become infectious.

“Because of space’s unidentified effects on bacteria and the immune system, we don’t know which organisms will cause problems,” Fox said. “However, we have developed a technique to determine an organism’s approximate identity.”

Their approach is based off the bacterial tree of life, which is arranged according to similarities in organisms’ DNA sequences. Organisms whose DNA sequences are closely matched are more closely related than organisms whose DNA sequences are less similar. Fox and Willson have developed a method to identify the DNA sequences that are unique to small groups of bacteria.

“Current detection systems mandate that you test for an exact organism. If a problem organism is similar but not identical to the organism you are testing for, the test will show up negative,” Fox said. “However, with our system, astronauts would be able to pinpoint an organism’s family and significantly narrow down the possibilities of its identity.”

Once Fox and Willson’s device identifies the problem organism, scientists can predict the bacteria’s source, like a faulty air filter or a water purifier, and fix the defective instrument for future missions.

Any kind of bacterial buildup should be avoided in the spacecraft.

“We are not specifically looking for deadly mutated bacteria,” Fox said. “We are more concerned about preventing everyday infections because, if you get sick in space, you don’t have a hospital around the corner for treatment. Our goal is to avoid infections with routine monitoring to keep bacteria levels low in the first place.”

The routine monitoring of bacterial levels is the second component of Fox and Willson’s research. Because of limited laboratory space and chemical availability in spacecrafts, they are designing an easy-to-use monitoring method for bacteria levels. Astronauts would filter the air or water, or swab a surface, to obtain the bacterial sample, and then they would test the sample for high levels of certain organisms that would indicate contamination.

“The tool will provide an early warning that the air or water purification system might not be working properly, allowing for needed repairs,” said Fox. “The routine monitoring system and the bacterial identification device will help astronauts stay healthy during their time in space.”


The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.


Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=39
http://www.nsbri.org/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>