Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists eavesdrop on cellular conversations by making mice ’glow’ with firefly protein

14.11.2002


Technology offers potential for treatment of cancer and other diseases



UCLA scientists coupled the protein that makes fireflies glow with a device similar to a home video camera to eavesdrop on cellular conversations in living mice. Reported in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences, their findings may speed development of new drugs for cancer, cardiovascular diseases and neurological diseases.

Led by Dr. Sanjiv Gambhir, UCLA associate professor of molecular and medical pharmacology and director of the Crump Institute for Molecular Imaging, the team’s research will allow scientists to study how cellular proteins talk to one another. These communications trigger changes that regulate a healthy body and cause disease when the signals go awry.


Gambhir and his colleagues used an optical camera equipped with the same kind of computer chip used in home video cameras to convert light into electrons. The team injected luciferase, the protein that makes fireflies glow, into cells, then injected the cells into the mouse.

They saw a remarkable sight. Each time two specific proteins spoke with each other, it activated the luciferase. The luciferase illuminated under the camera and produced brilliant flashes of light in the mouse.

"The mouse literally glowed under the camera," said Gambhir, a member of the UCLA Jonsson Cancer Center. "We ’heard’ the proteins ’talk’ by watching the communication pathways come to life."

"In the past, we had to extract an individual cell from an animal and use a microscope to study how cellular proteins communicated with each other," Gambhir said. "Now we can watch proteins in the same cell talking to each other in their natural setting."

"It’s similar to when the switchboard operator used to eavesdrop on people’s telephone conversations," he said. "Our technique enables us to listen in on multiple conversations in cells taking place deep within a living animal."

According to Gambhir, the discovery will enable researchers to create and evaluate new ways of treating human disease. "Human disease is often caused by a single misfiring during a series of intracellular communications," he said. "If we can understand and monitor what goes wrong, we may be able to develop drugs to block or improve cells’ ability to process their proteins’ internal conversations."

Cells rely on receptors that line their surfaces to communicate between the external world and their internal environment. Functioning like baseball catchers’ mitts, the receptors continually grab and release different hormones and molecules that influence cellular communication activity.

"A cell receptor has no voice or vocal cord," Gambhir said. "It must plug into the cell’s protein network to speak. One protein moves and acts on another, which sets off a chain reaction of conversations. Finally, the message reaches deep into the nucleus and tells the cells’ genes what to do."

Gambhir said that the new system could be used to test drugs that target protein-to-protein interactions in mice or advance medical research with a new breed of mice that indicates when intracellular interactions take place. The method is non-invasive and does not harm or cause pain to the mouse.

"This technique can help us better understand the processes of many human diseases," Gambhir said. "For example, we can image new drugs for cancer that halt cell division and actually see whether or not they work in the living body. If the drugs don’t stop cell growth, we can design better drugs and test them under the camera. The possibilities are endless."


The National Cancer Institute and Department of Energy funded the study. Gambhir’s co-authors included R. Paulmurugan from UCLA and Y. Umezawa from the University of Tokyo.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>