Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists eavesdrop on cellular conversations by making mice ’glow’ with firefly protein

14.11.2002


Technology offers potential for treatment of cancer and other diseases



UCLA scientists coupled the protein that makes fireflies glow with a device similar to a home video camera to eavesdrop on cellular conversations in living mice. Reported in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences, their findings may speed development of new drugs for cancer, cardiovascular diseases and neurological diseases.

Led by Dr. Sanjiv Gambhir, UCLA associate professor of molecular and medical pharmacology and director of the Crump Institute for Molecular Imaging, the team’s research will allow scientists to study how cellular proteins talk to one another. These communications trigger changes that regulate a healthy body and cause disease when the signals go awry.


Gambhir and his colleagues used an optical camera equipped with the same kind of computer chip used in home video cameras to convert light into electrons. The team injected luciferase, the protein that makes fireflies glow, into cells, then injected the cells into the mouse.

They saw a remarkable sight. Each time two specific proteins spoke with each other, it activated the luciferase. The luciferase illuminated under the camera and produced brilliant flashes of light in the mouse.

"The mouse literally glowed under the camera," said Gambhir, a member of the UCLA Jonsson Cancer Center. "We ’heard’ the proteins ’talk’ by watching the communication pathways come to life."

"In the past, we had to extract an individual cell from an animal and use a microscope to study how cellular proteins communicated with each other," Gambhir said. "Now we can watch proteins in the same cell talking to each other in their natural setting."

"It’s similar to when the switchboard operator used to eavesdrop on people’s telephone conversations," he said. "Our technique enables us to listen in on multiple conversations in cells taking place deep within a living animal."

According to Gambhir, the discovery will enable researchers to create and evaluate new ways of treating human disease. "Human disease is often caused by a single misfiring during a series of intracellular communications," he said. "If we can understand and monitor what goes wrong, we may be able to develop drugs to block or improve cells’ ability to process their proteins’ internal conversations."

Cells rely on receptors that line their surfaces to communicate between the external world and their internal environment. Functioning like baseball catchers’ mitts, the receptors continually grab and release different hormones and molecules that influence cellular communication activity.

"A cell receptor has no voice or vocal cord," Gambhir said. "It must plug into the cell’s protein network to speak. One protein moves and acts on another, which sets off a chain reaction of conversations. Finally, the message reaches deep into the nucleus and tells the cells’ genes what to do."

Gambhir said that the new system could be used to test drugs that target protein-to-protein interactions in mice or advance medical research with a new breed of mice that indicates when intracellular interactions take place. The method is non-invasive and does not harm or cause pain to the mouse.

"This technique can help us better understand the processes of many human diseases," Gambhir said. "For example, we can image new drugs for cancer that halt cell division and actually see whether or not they work in the living body. If the drugs don’t stop cell growth, we can design better drugs and test them under the camera. The possibilities are endless."


The National Cancer Institute and Department of Energy funded the study. Gambhir’s co-authors included R. Paulmurugan from UCLA and Y. Umezawa from the University of Tokyo.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>