Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae understand the language of bacteria

12.11.2002


It has hitherto not been known that higher organisms, such as green algae, can communicate with bacteria. But Debra Milton, associate professor at Umeå University in Sweden, shows in the recent issue of the prominent journal Science that bacteria attract green algae with the aid of signal molecules. Surfaces under water are rapidly colonized by bacteria, which cover the surface with a thin film known as biofilm. Within this biofilm bacteria coordinate activities among the cells with the help of chemical signal molecules, such as N-acyl homoserine lactones (AHL). It is well known that bacteria produce and make use of AHL-signal molecules. On the other hand, it has not been known that organisms, such as algae, also have the capacity to make use of these signal molecules.

Enteromorpha is a common green alga that binds to and thereby damages human constructions like oil rigs, pipes, vessels, etc. This has led to many unwanted problems, such as increased friction for ships, which in turn leads to increased fuel costs, deposition of minerals, and degradation of materials, all entailing major economic consequences.

Green algae are spread in water by producing mobile microscopic zoospores that seek out suitable surfaces on which to adhere. Once these spores have found a suitable place, they excrete an adhesive molecule that permanently fastens the zoospore to the surface, and a new alga can develop and grow. Researchers have previously shown that zoospores adhere to bacteria cells and that biofilm increases the number of zoospores that latch on to such surfaces.



But how do the zoospores find the bacteria? Debra Milton, in collaboration with researchers from the UK, has discovered that Enteromorpha zoospores find bacteria by seeking AHL signal molecules. Thus the signal molecules affect what surfaces the algae will bind to, and they only adhere to those surfaces that are covered by biofilm, where the signal molecules are produced.

A new method for preventing the binding of zoospores could be to block the production of signal molecules in bacteria. This would make it possible to control the harmful colonization of underwater constructions via green algae, with substantial economic benefits as a result.

Karin Wikman | alfa
Further information:
http://www.umu.se

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>