Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular pathway includes a ’clock’ that steers gene activity

08.11.2002


Understanding the timed messages within cells could lead to new medical treatments



Researchers from The Johns Hopkins University and other institutions have discovered a biochemical "clock" that appears to play a crucial role in the way information is sent from the surface of a cell to its nucleus. These messages can cause the cell to thrive or commit suicide, and manipulating them could lead to new treatments for cancer and other diseases, the researchers say.

The findings, based on lab experiments conducted at Cal Tech and computer models developed at Johns Hopkins, are reported in the Nov. 8 issue of the journal "Science."


Scientists have known that living cells send messages from their surfaces to their nuclei by setting off a chain of chemical reactions that pass the information along like signals traveling over a telephone wire. Such reaction chains are called signaling pathways. But while studying one such reaction chain called the NF-kappaB pathway within mouse cells, the university researchers learned that the signal transmission process is even more complicated.

"We found that if the pathway was activated for a short time, a single pulse of activity was delivered to the nucleus, like a single tick of a clock, activating a set of genes," said Andre Levchenko, assistant professor in the Department of Biomedical Engineering at Johns Hopkins. "But longer activation could produce more pulses and induce a larger gene set. We believe that the timing between pulses is critical. If too much or too little time elapsed, the genetic machinery would not respond properly."

Levchenko, a lead author on the "Science" paper, and his colleagues concluded that the signaling pathway inside a cell was serving as much more than a simple wire. "It was not just carrying the information, it was processing it," he said. "The pathway was operating like a clock with a pendulum, delivering the signal at particular intervals of time in a way that could resonate with the behavior of the genes in the nucleus."

When information moves through a cell pathway to genes in the nucleus, it prompts the genes to send out their own instructions, directing the cell to assemble proteins to carry out various tasks. By developing a better understanding of the way information travels along a pathway, Levchenko said, researchers may be able to create drugs that disrupt or change this line of communication, and in turn affect overall functioning within the cell. For example, a drug designed to shut down the NF-kappaB pathway might cause a cancer cell to commit suicide through a biological process called apoptosis. "We know that cancer cells use this pathway," he said. "If we can find a smart way to cut this ’wire,’ it will be much easier to kill the cancer cells."

Levchenko and his colleagues made their discovery by first developing a computer model showing how they believed the pathway operates. Then they verified their results by studying live cells in the lab. Finally, they used the validated model to guide further experiments. Although mouse cells called fibroblasts were used, Levchenko said the findings should also hold true for human fibroblasts and other cell types.

Because the computer model has been validated, it could be used to speed up the development of pharmaceuticals that might affect the cell pathway, said Levchenko, who is a part of a computational biology research team based at the Whitaker Biomedical Engineering Institute at Johns Hopkins. He said drug developers could use the computer model to quickly test how various compounds may affect the cell behavior before launching more time-consuming lab tests with live cells. "This has given us a very good tool to predict things that may happen when the pathway properties are altered, reducing the need to engage in exhaustive animal tests," Levchenko said.


The other lead author of the Science paper was Alexander Hoffman, who engaged in the research as a postdoctoral scholar at Cal Tech and now is an assistant professor of biology at the University of California, San Diego. The co-authors were Martin L. Scott, who conducted research at MIT and who now is employed by Biogen Inc.; and David Baltimore, president of Cal Tech.

Color Image of Andre Levchenko available; Contact Phil Sneiderman Related Links:

Andre Levchenko’s Web page: http://www.bme.jhu.edu/~alev
Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251


Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>