Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular pathway includes a ’clock’ that steers gene activity

08.11.2002


Understanding the timed messages within cells could lead to new medical treatments



Researchers from The Johns Hopkins University and other institutions have discovered a biochemical "clock" that appears to play a crucial role in the way information is sent from the surface of a cell to its nucleus. These messages can cause the cell to thrive or commit suicide, and manipulating them could lead to new treatments for cancer and other diseases, the researchers say.

The findings, based on lab experiments conducted at Cal Tech and computer models developed at Johns Hopkins, are reported in the Nov. 8 issue of the journal "Science."


Scientists have known that living cells send messages from their surfaces to their nuclei by setting off a chain of chemical reactions that pass the information along like signals traveling over a telephone wire. Such reaction chains are called signaling pathways. But while studying one such reaction chain called the NF-kappaB pathway within mouse cells, the university researchers learned that the signal transmission process is even more complicated.

"We found that if the pathway was activated for a short time, a single pulse of activity was delivered to the nucleus, like a single tick of a clock, activating a set of genes," said Andre Levchenko, assistant professor in the Department of Biomedical Engineering at Johns Hopkins. "But longer activation could produce more pulses and induce a larger gene set. We believe that the timing between pulses is critical. If too much or too little time elapsed, the genetic machinery would not respond properly."

Levchenko, a lead author on the "Science" paper, and his colleagues concluded that the signaling pathway inside a cell was serving as much more than a simple wire. "It was not just carrying the information, it was processing it," he said. "The pathway was operating like a clock with a pendulum, delivering the signal at particular intervals of time in a way that could resonate with the behavior of the genes in the nucleus."

When information moves through a cell pathway to genes in the nucleus, it prompts the genes to send out their own instructions, directing the cell to assemble proteins to carry out various tasks. By developing a better understanding of the way information travels along a pathway, Levchenko said, researchers may be able to create drugs that disrupt or change this line of communication, and in turn affect overall functioning within the cell. For example, a drug designed to shut down the NF-kappaB pathway might cause a cancer cell to commit suicide through a biological process called apoptosis. "We know that cancer cells use this pathway," he said. "If we can find a smart way to cut this ’wire,’ it will be much easier to kill the cancer cells."

Levchenko and his colleagues made their discovery by first developing a computer model showing how they believed the pathway operates. Then they verified their results by studying live cells in the lab. Finally, they used the validated model to guide further experiments. Although mouse cells called fibroblasts were used, Levchenko said the findings should also hold true for human fibroblasts and other cell types.

Because the computer model has been validated, it could be used to speed up the development of pharmaceuticals that might affect the cell pathway, said Levchenko, who is a part of a computational biology research team based at the Whitaker Biomedical Engineering Institute at Johns Hopkins. He said drug developers could use the computer model to quickly test how various compounds may affect the cell behavior before launching more time-consuming lab tests with live cells. "This has given us a very good tool to predict things that may happen when the pathway properties are altered, reducing the need to engage in exhaustive animal tests," Levchenko said.


The other lead author of the Science paper was Alexander Hoffman, who engaged in the research as a postdoctoral scholar at Cal Tech and now is an assistant professor of biology at the University of California, San Diego. The co-authors were Martin L. Scott, who conducted research at MIT and who now is employed by Biogen Inc.; and David Baltimore, president of Cal Tech.

Color Image of Andre Levchenko available; Contact Phil Sneiderman Related Links:

Andre Levchenko’s Web page: http://www.bme.jhu.edu/~alev
Johns Hopkins Department of Biomedical Engineering: http://www.bme.jhu.edu

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 / Fax (410) 516-5251


Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>