Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes, neurons, and the Internet found to have some identical organizing principles


How do 30,000 genes in our DNA work together to form a large part of who we are? How do one hundred billion neurons operate in our brain? The huge number of factors involved makes such complex networks hard to crack. Now, a study published in the October 25 issue of Science uncovers a strategy for finding the organizing principles of virtually any network – from neural networks to ecological food webs or the Internet.

A team headed by Dr. Uri Alon, of the Weizmann Institute of Science’s Molecular Cell Biology Department has found several such organizational patterns – which they call "network motifs" – underlying genetic, neural, technological, and food networks. The mathematical technique was first proposed by Alon earlier this year (published in Nature Genetics) and has now been shown to be applicable in a wide range of systems.

In developing the technique, Alon surmised that patterns serving an important function in nature might recur more often than in randomized networks. This in mind, he devised an algorithm that enabled him to analyze the plentiful scientific findings examining key networks in some well-researched organisms. Alon noticed that some patterns in the networks were inexplicably more repetitive than they would be in randomized networks. This handful of patterns was singled out as a potential bundle of network motifs.

Surprisingly, the team found two identical motifs in genetic and neural systems. "Apparently both information-processing systems employ similar strategies," says Alon. "The motifs shared by neural and genetic networks may serve to filter noise or allow for complex activation of neurons or genes."

Exposing the "wiring" of such networks can thus help scientists classify systems generically (just as lions and mice both belong to the same "class," neural and genetic systems could be classified in the same generic category if they have many motifs in common). This would function as more than just an organizing principle: "One might be able to learn about the neural system by studying the genetic system, which is usually more accessible," says Alon.

The team studied seven different ecosystems and found motifs relating to food webs. One recurring pattern shows that different species of prey of a given predator often compete over a shared food resource. This food resource is not shared by the predator.

Alon’s method detects network motifs on the basis of their frequency. Any patterns that are functionally important but not statistically significant will not be picked up by this method. But it is an important step forward in exposing the backbones of complicated systems.

What could this pristine territory offer to humankind? The dream, says Alon, is to detect and understand the fundamental laws governing our bodies, rendering the workings of a cell fully evident and the means of repairing it clear cut. One day in the distant future, scientists hope, doctors’ work will be comparable to that of present-day electronic engineers. They will analyze blueprints of malfunctioning cells and then set to work to put them back in shape.

Alon’s research team at Weizmann included students Ron Milo, Shalev Itzkovitz, Nadav Kashatan, and Shai Shen-Orr. Donor Support for Dr. Uri Alon: James and Ilene Nathan Charitable Directed Fund, Mrs. Harry M. Ringel Memorial Foundation, Charpak-Vered Visiting Fellowship, Ottawa, Canada, Yad Hanadiv, Clore Center for Biological Physics, Yad Abraham Center for Cancer Diagnostics and Therapy, Rita Markus Foundation Inc. and Minerva Stiftung Gesellschaft fuer die Forschung m.b.H. Dr. Alon is the incumbent of the Carl & Frances Korn Career Development Chair in the Life Sciences.

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians, and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.

Below are a few of the uncovered network motifs: (Note to Editor: Illustrations available)

1) The conveyor belt

Found in gene regulation networks. X, in relatively small amounts, will produce a. As its amount increases, it will produce b, c, and d, respectively, allowing for controlled production. Deactivation will follow the opposite sequence.

2) The three chain

Found in food webs. Predators don’t usually eat the same food as their prey. Omnivores, such as humans, are the exception to the rule and are rare in simple ecosystems, conforming to the "feedforward loop" shown below.

3) The bi-parallel

Found in food webs and neural networks: Species of prey of a given predator will often have a similar diet. Like wise, if two neurons are activated by the same neuron, they are likely to both be needed to activate a subsequent neuron.

4) The feedforward loop

Found in gene regulation and neural networks. For Z (a gene or a neuron) to be activated, both X and Y must send it a signal. Y is activated by X, but only when the latter’s signal lasts for a long enough time. Thus, Z won’t begin to be activated if X is activated for only a short time. This motif’s function may be to filter noise (rapid fluctuations of X are unimportant "noise") and to allow rapid deactivation of genes or neurons.

5) The combinatorial switch (or "bi-fan")

Found in gene regulation and neural networks: Different combinations of X and Y give different possible outputs a and b.

Jeffrey Sussman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>