Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Show Human Neural Stem Cells Can Become Dopamine-Making Brain Cells in the Laboratory

05.11.2002


Biologists at the Farber Institute for Neurosciences at Thomas Jefferson University have shown for the first time in the laboratory that they can convert some adult human neural stem cells to brain cells that can produce dopamine, the brain chemical missing in Parkinson’s disease. If the researchers can better understand the process and harness this ability, the work may someday lead to new strategies in treating neurodegenerative diseases such as Parkinson’s.



Developmental biologist Lorraine Iacovitti, Ph.D., professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, is searching for ways to convert stem cells into dopamine-making neurons to replace those lost in Parkinson’s. In previous work, she and her co-workers showed that mouse neural stem cells placed in rats with Parkinson’s disease could develop into brain cells that produced tyrosine hydroxylase (TH), the enzyme needed to make dopamine.

Dr. Iacovitti, who also is associate director of the Farber Institute for Neurosciences at Jefferson, wanted to see if human neural stem cells could become dopamine-producing brain cells as well. She and her colleagues grew neural stem cells in a laboratory dish. Using a cocktail of protein growth factors and nutrients, the researchers found they could coax approximately 25 percent of the stem cells to make TH in the dish, proving the stem cells had the capacity to manufacture dopamine. What’s more, when they removed the growth factor-cocktail, the cells continued to produce the enzyme. She reports her team’s findings November 5 at the annual meeting of the Society for Neuroscience in Orlando.


“We have two examples of human stem cells that do this,” she says. “The obvious extension [of these results] is to take those predifferentiated human dopamine neurons and transplant then into Parkinson’s disease model systems.”

But first, Dr. Iacovitti would like to purify these neurons. Her group has developed ways of tagging live dopamine neurons with a fluorescent marker, she says, “enabling us for the first time to purify or enrich the number of dopaminergic neurons and transplant them into Parkinsonian animal models.”

Ultimately, she says, they hope to one day be able to develop this as a treatment for Parkinson’s disease in people.

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/
http://www.jeffersonhospital.org/news/e3front.dll?durki=15397

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>