Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Show Human Neural Stem Cells Can Become Dopamine-Making Brain Cells in the Laboratory

05.11.2002


Biologists at the Farber Institute for Neurosciences at Thomas Jefferson University have shown for the first time in the laboratory that they can convert some adult human neural stem cells to brain cells that can produce dopamine, the brain chemical missing in Parkinson’s disease. If the researchers can better understand the process and harness this ability, the work may someday lead to new strategies in treating neurodegenerative diseases such as Parkinson’s.



Developmental biologist Lorraine Iacovitti, Ph.D., professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, is searching for ways to convert stem cells into dopamine-making neurons to replace those lost in Parkinson’s. In previous work, she and her co-workers showed that mouse neural stem cells placed in rats with Parkinson’s disease could develop into brain cells that produced tyrosine hydroxylase (TH), the enzyme needed to make dopamine.

Dr. Iacovitti, who also is associate director of the Farber Institute for Neurosciences at Jefferson, wanted to see if human neural stem cells could become dopamine-producing brain cells as well. She and her colleagues grew neural stem cells in a laboratory dish. Using a cocktail of protein growth factors and nutrients, the researchers found they could coax approximately 25 percent of the stem cells to make TH in the dish, proving the stem cells had the capacity to manufacture dopamine. What’s more, when they removed the growth factor-cocktail, the cells continued to produce the enzyme. She reports her team’s findings November 5 at the annual meeting of the Society for Neuroscience in Orlando.


“We have two examples of human stem cells that do this,” she says. “The obvious extension [of these results] is to take those predifferentiated human dopamine neurons and transplant then into Parkinson’s disease model systems.”

But first, Dr. Iacovitti would like to purify these neurons. Her group has developed ways of tagging live dopamine neurons with a fluorescent marker, she says, “enabling us for the first time to purify or enrich the number of dopaminergic neurons and transplant them into Parkinsonian animal models.”

Ultimately, she says, they hope to one day be able to develop this as a treatment for Parkinson’s disease in people.

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/
http://www.jeffersonhospital.org/news/e3front.dll?durki=15397

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>