Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify decision-making area of the brain


New research from investigators in the Centre for Neuroscience Studies at Queen’s University and the Centre for Brain and Mind at The University of Western Ontario has provided the first neuro-imaging evidence that the brain’s frontal lobes play a critical role in planning and choosing actions.

Their study is published today in the journal Nature Neuroscience.

The research team has found that a small region in the frontal lobe of the human brain is selectively activated when an individual intends to make a particular action and not another. These findings help explain why individuals with frontal lobe damage sometimes act impulsively and often have problems making decisions.

“We have identified signals in the normal human brain that we can now investigate in patients with neurological or psychiatric disorders that affect frontal lobe function,” says team member Doug Munoz, professor in the Departments of Physiology and Psychology at Queen’s, and holder of a Canada Research Chair in Neuroscience. “For example, subjects diagnosed with attention-deficit hyperactivity disorder should produce different patterns of brain activation that we can identify. We will then be able to see if these patterns change when they are treated with medication.”

The lead author on the paper is Jason Connolly, a neuroscience graduate student at Western. Other members of the team include Dr. Munoz from Queen’s, and Mel Goodale and Ravi Menon from Western.

The researchers used a new fMRI "single-event" method to study the changes in blood flow in the frontal lobes as volunteers prepared to perform one of two different kinds of movements when a visual target was presented. Not only did the signals in the frontal lobes build up over time as the volunteers got ready to respond, but the nature of the activity varied and depended on whether they were planning to make one kind of movement rather than another.

Future experiments by the research team will explore how these frontal circuits interact with other areas of the brain in the planning and control of everyday behaviour, as well as investigating patient groups.


Nancy Dorrance, Queen’s News & Media Services, 613.533.2869
David Pulver, Queen’s News & Media Services, 613.533.6000 ext. 77559

Nancy Dorrance | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>