Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming has uneven effect on coastal animals

01.11.2002


Although it is expected that populations of many organisms will move away from the equator and toward the poles to stay cool during global warming, researchers have found that the intertidal zone does not exactly fit this pattern. A study published in this week’s Science Magazine indicates that there may be "hot spots" at northern shoreline sites within the next three to five years. This is partly due to the timing of the tides.

"Because they are assumed to live very close to their thermal tolerance limits, organisms inhabiting the rocky intertidal zone have emerged in recent years as potential harbingers of the effects of climate change on species distribution," explain the authors, three of whom are from the University of California, Santa Barbara.

Coauthor Carol Blanchette, a researcher with the Marine Science Institute at the University of California, Santa Barbara, says that neither air nor water temperatures alone are good proxies for body temperatures in intertidal organisms. Multiple climatic factors drive body temperature and the pattern of exposure to these conditions is influenced by shifts in the tidal cycle with latitude.



The researchers put temperature loggers, modified to thermally match living mussels, in mussel beds at eight sites spanning 14 degrees of latitude ranging from northern Washington to Point Conception, Calif. and measured temperatures over the course of a year.

They found that Lompoc Landing, Calif., one of the more southern sites, was thermally very similar to Tatoosh Island, Wash.––the northernmost site where instruments were deployed.

In several cases the animals in southern sites are submerged in the afternoon. "As a result, even if terrestrial climatic conditions become progressively hotter as one moves south along the West Coast, as they likely do, animals at southern sites may be afforded considerable protection by being submerged during the hottest parts of the day," explain the authors.

The article states that "an examination of tidal height predicts that maximum exposure at many northern Washington sites will occur in 2003. Indeed, large mussel mortality events occurred in the summer of 2002 in both Washington and Oregon. These results suggest that, all other factors being equal, the relative level of thermal stress observed between these sites will vary markedly over time."

Patricia M. Halpin and Gretchen E. Hofmann, both from UCSB, were also coauthors on the article. The first author is Brian Helmuth of the University of South Carolina. Christopher D. G. Harley and Michael O’Donnell, both of Stanford University were also coauthors.

The work was supported by an NSF grant and a grant from the National Geographic Society. Logistical support was provided by the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO).


Carol Blanchette can be reached at (805) 893-5144.
Patricia Halpin can be reached at (805) 893-6174.
Gretchen E. Hofmann can be reached at (805) 893-6175

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>