Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist helps identify neurons in worms that control link between stress, eating

31.10.2002


Scientists at UT Southwestern Medical Center at Dallas and the University of California, San Francisco have shown that feeding behavior in worms is controlled by neurons that detect adverse or stressful conditions.



The findings are published in the Oct. 31 issue of Nature.

The discovery of the gene that controls social feeding behavior in worms was made in 1998 by researchers at UCSF. The new findings build on the earlier research by identifying the nociceptive neurons – neurons that transmit pain signals - triggering group feeding.


"The gene that controls this behavior in worms is like the one that controls feeding in humans," said Dr. Leon Avery, associate professor of molecular biology at UT Southwestern and an author of the study. "The epidemic of obesity in America makes [the findings on neurons] potentially relevant to health."

Scientists have long known that soil worms, called Caenorhabditis elegans, have varying eating habits. The species of the worm commonly used in research labs tends to feed alone. In the wild, however, most of the C. elegans feed in groups.

"It’s like they’re having a party," Avery said. "Other worms pay no attention to each other when there’s food."

In higher species, factors like season, availability of food and natural enemies can regulate aggregation behavior, which in turn can affect biodiversity as well as community structure and dynamics. Although social scientists have made strides in understanding the significance group behaviors have had on ecological and evolutionary processes, little research has been done on the basic neural mechanisms underlying this behavior.

Avery and other researchers were able to show that whether the worms ate alone or in groups was dictated by the existence of the ADL and ASH nociceptive neurons. Worms without ASH and ADL eat alone.

C. elegans are studied because they have a genetic makeup similar to humans. Because their systems are very small (about 950 cells make up an entire worm), genes are easier to track and study. About 1 millimeter long, the worms grow, reproduce and age much like humans. Researchers who identified key genes in C. elegans involved in organ development and programmed cell death were awarded the Nobel Prize in physiology or medicine earlier this month.

Avery said the Nature study is the culmination of a decade-long research project. Some of the initial work was performed in 1990 by Dr. M. Wayne Davis, another of the study’s authors, when he was a summer undergraduate research fellow at UT Southwestern under the tutelage of Avery. Davis is currently a researcher at the University of Utah.


###
The work was supported by the Wellcome Trust, the Howard Hughes Medical Institute and the Medical Research Council of Great Britain.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then click on "Receive Our News" in the left navigation and follow the instructions.


Steve O’Brien | EurekAlert!
Further information:
http://www3.utsouthwestern.edu/
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>