Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist helps identify neurons in worms that control link between stress, eating

31.10.2002


Scientists at UT Southwestern Medical Center at Dallas and the University of California, San Francisco have shown that feeding behavior in worms is controlled by neurons that detect adverse or stressful conditions.



The findings are published in the Oct. 31 issue of Nature.

The discovery of the gene that controls social feeding behavior in worms was made in 1998 by researchers at UCSF. The new findings build on the earlier research by identifying the nociceptive neurons – neurons that transmit pain signals - triggering group feeding.


"The gene that controls this behavior in worms is like the one that controls feeding in humans," said Dr. Leon Avery, associate professor of molecular biology at UT Southwestern and an author of the study. "The epidemic of obesity in America makes [the findings on neurons] potentially relevant to health."

Scientists have long known that soil worms, called Caenorhabditis elegans, have varying eating habits. The species of the worm commonly used in research labs tends to feed alone. In the wild, however, most of the C. elegans feed in groups.

"It’s like they’re having a party," Avery said. "Other worms pay no attention to each other when there’s food."

In higher species, factors like season, availability of food and natural enemies can regulate aggregation behavior, which in turn can affect biodiversity as well as community structure and dynamics. Although social scientists have made strides in understanding the significance group behaviors have had on ecological and evolutionary processes, little research has been done on the basic neural mechanisms underlying this behavior.

Avery and other researchers were able to show that whether the worms ate alone or in groups was dictated by the existence of the ADL and ASH nociceptive neurons. Worms without ASH and ADL eat alone.

C. elegans are studied because they have a genetic makeup similar to humans. Because their systems are very small (about 950 cells make up an entire worm), genes are easier to track and study. About 1 millimeter long, the worms grow, reproduce and age much like humans. Researchers who identified key genes in C. elegans involved in organ development and programmed cell death were awarded the Nobel Prize in physiology or medicine earlier this month.

Avery said the Nature study is the culmination of a decade-long research project. Some of the initial work was performed in 1990 by Dr. M. Wayne Davis, another of the study’s authors, when he was a summer undergraduate research fellow at UT Southwestern under the tutelage of Avery. Davis is currently a researcher at the University of Utah.


###
The work was supported by the Wellcome Trust, the Howard Hughes Medical Institute and the Medical Research Council of Great Britain.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then click on "Receive Our News" in the left navigation and follow the instructions.


Steve O’Brien | EurekAlert!
Further information:
http://www3.utsouthwestern.edu/
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>