Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientist helps identify neurons in worms that control link between stress, eating

31.10.2002


Scientists at UT Southwestern Medical Center at Dallas and the University of California, San Francisco have shown that feeding behavior in worms is controlled by neurons that detect adverse or stressful conditions.



The findings are published in the Oct. 31 issue of Nature.

The discovery of the gene that controls social feeding behavior in worms was made in 1998 by researchers at UCSF. The new findings build on the earlier research by identifying the nociceptive neurons – neurons that transmit pain signals - triggering group feeding.


"The gene that controls this behavior in worms is like the one that controls feeding in humans," said Dr. Leon Avery, associate professor of molecular biology at UT Southwestern and an author of the study. "The epidemic of obesity in America makes [the findings on neurons] potentially relevant to health."

Scientists have long known that soil worms, called Caenorhabditis elegans, have varying eating habits. The species of the worm commonly used in research labs tends to feed alone. In the wild, however, most of the C. elegans feed in groups.

"It’s like they’re having a party," Avery said. "Other worms pay no attention to each other when there’s food."

In higher species, factors like season, availability of food and natural enemies can regulate aggregation behavior, which in turn can affect biodiversity as well as community structure and dynamics. Although social scientists have made strides in understanding the significance group behaviors have had on ecological and evolutionary processes, little research has been done on the basic neural mechanisms underlying this behavior.

Avery and other researchers were able to show that whether the worms ate alone or in groups was dictated by the existence of the ADL and ASH nociceptive neurons. Worms without ASH and ADL eat alone.

C. elegans are studied because they have a genetic makeup similar to humans. Because their systems are very small (about 950 cells make up an entire worm), genes are easier to track and study. About 1 millimeter long, the worms grow, reproduce and age much like humans. Researchers who identified key genes in C. elegans involved in organ development and programmed cell death were awarded the Nobel Prize in physiology or medicine earlier this month.

Avery said the Nature study is the culmination of a decade-long research project. Some of the initial work was performed in 1990 by Dr. M. Wayne Davis, another of the study’s authors, when he was a summer undergraduate research fellow at UT Southwestern under the tutelage of Avery. Davis is currently a researcher at the University of Utah.


###
The work was supported by the Wellcome Trust, the Howard Hughes Medical Institute and the Medical Research Council of Great Britain.

To automatically receive news releases from UT Southwestern via e-mail, go to http://www3.utsouthwestern.edu/ and click on "Latest News." Then click on "Receive Our News" in the left navigation and follow the instructions.


Steve O’Brien | EurekAlert!
Further information:
http://www3.utsouthwestern.edu/
http://www.swmed.edu/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>