Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemist shoots chemistry ’in the act’

30.10.2002


A physical chemist at Washington University in St. Louis is combining powerful lasers with clever timing schemes to characterize how chemical reactions occur with very precise atomic and time resolution. Understanding the mechanisms and physics of a chemical reaction at the most fundamental level could provide valuable insights into new directions for the field of chemistry.

Richard A. Loomis, Ph.D., assistant professor of chemistry, is a physical chemist building on the femtochemistry advances of Nobel Prize Winner (1999) Ahmed H. Zewail of Cal Tech who observed chemical bonds breaking as a molecule falls apart in real-time. Loomis’ research group is tackling one of the next major hurdles in chemistry, observing two molecules collide and form reaction products in real-time. These novel efforts are driven by the hopes of understanding how, as Yeats chronicled in the last century, "Things fall apart", and as Loomis now emphasizes, "Things are made."

Loomis discussed his work Oct. 29, 2002, at the 40th New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30, at Washington University in St. Louis.



Using lasers with extremely short pulse durations and very specific colors, Loomis makes real-time "movies" of molecules forming and then breaking.

"What we’re trying to do is find how molecules prefer to come together to form new compounds, and what forces and geometries encourage the breaking of bonds," Loomis said. "This is a complicated business. We’re trying to learn the road map -- the hills and valleys and winding curves -- that molecules follow during a reaction."

As a physical chemist, Loomis’ research interests are centered on probing and controlling reaction dynamics with atomic resolution -- the most fundamental level. The experiments in the Loomis laboratory uniquely blend a combination of established molecular beam techniques that allow them to cool reactants to the lowest possible temperatures, about -273 degrees Celsius, with sophisticated laser technology which in turn enables them to initiate the reactions with specific energies and preferred orientations at well-defined times.

Simply irresistible, but no energy

At the low temperatures achieved in the experiments, two molecules find each other irresistible and are drawn together. However, they don’t have enough energy to react. "They end up hanging out near each other," Loomis explained. "We trap them in a cluster prior to reaction. This cluster serves as a launching pad from which a laser can be used to excite the molecules at a well-defined time to specific energies and geometries and thus turn the reaction on."

By using multiple lasers, Loomis and his group can not only precisely start the reactions but also monitor the decay of the reactants or the formation of the products using a second laser set to appropriate spectroscopic transitions. At a given delay in time between the first and second laser, a snapshot of the populations of the reactants and products, as well as the relative orientations between the atoms involved in the reaction, can be recorded at that instant along the reaction pathway. By recording numerous snapshots at incrementally increasing delay times between the lasers, a movie of the reaction at the atomic level is generated with sufficient time resolution, less than 0.0000000000001 seconds, to see geometries changing, bonds breaking, and new bonds forming.

As if watching and characterizing chemical reactions isn’t enough, Loomis is also using sophisticated laser pulse-shaping methods and implementing quantum mechanics to control the fate of reactions. Starting with a single ultrashort laser pulse, a computational genetic learning algorithm is used to generate a very complicated pulse sequence that focuses the molecules at desired orientations and energies at a specific time. Such an algorithm derives its behavior from a metaphor of evolution processes in nature. The learning algorithm can be told to enhance the yield of a chemical reaction or to enhance one reaction product over other, undesired reaction products. Loomis emphasizes the utility of this chemistry tool.

"Imagine hitting a key on your computer keyboard and getting one reaction product. Then hit a different key and get a different product without changing anything else, " he said.

The use of lasers to dictate chemistry could actually create entirely new possibilities in chemistry. For instance, it may be possible in the future to simply shine a powerful light with the right properties at just the right time on a bulk mixture of reactants to increase the efficiency of expensive reaction schemes. This could be especially important for industrial chemical production where an increase in a reaction yield of a few percent could mean millions of dollars in profit. Lofty goals, such as improving air quality by blocking the formation of halogen waste products that are formed in combustion and industrial processes, also may be in reach.

Another exciting impact area in which Loomis is striving to make keg contributions is in quantum computing. Here Loomis wants to use the learning algorithm and the carefully tailored laser pulse sequences to quantum mechanically encode information into molecules and materials. He would use the second laser to extract the encoded information from the system at a later time. This aspect of Loomis’ research may make significant impacts on the future of computer design as well as the teleportation or encoded communication of information through space.

Questions

Contact: Gerry Everding, Office of Public Affairs, Washington University in St. Louis, (314) 935-6375; gerry_everding@aismail.wustl.edu

Gerry Everding | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/loomis.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>