Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming brain research with jellyfish genes and advances in microscopy

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

"This work represents a new approach to studying the biology of whole, living animals," says Jeff W. Lichtman, M.D., Ph.D., professor of anatomy and neurobiology. "I believe these methods will transform not only neurobiology, but also immunology and studies of organs such as the kidney, liver, and lung."

Lichtman presented the work at the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.



"The experiences we have in the world somehow shape our brains," says Lichtman. "How this information is encoded in our nervous systems is one of the deep, fundamental questions of neurobiology."

To help answer that question, Lichtman, together with Joshua R. Sanes, Ph.D., Alumni Endowed Professor of Neurobiology, and other colleagues at the School of Medicine, have developed strains of mice with nerve tracts stained by up to four different fluorescent jellyfish proteins, each of which glows with a different color when exposed to the correct energy of light. Using an advanced technology such as low-light-level digital imaging, confocal microscopy and two-photon microscopy, the investigators can observe over time nerve cells and the synapses that interconnect them within the brain.

Two-photon microscopy uses a powerful infrared laser that can selectively stimulate the fluorescent proteins within the nerve cells deep within the brain to glow. This approach permits imaging the brain without having to penetrate the skull. Computerized techniques then produce three-dimensional images of neural connections in the living animal, enabling the researchers to watch how patterns of connections between neurons change during learning and development.

The researchers’ studies are providing fascinating clues about how learning occurs in the brain. For example, it seems that nerve cells in the brain begin with many connections to other nerve cells. With time, many of these connections are eliminated shortly after birth.

"The brain begins with many diffuse and unspecialized sets of connections, and then sort of sculpts out subsets of those connections to serve particular functions," says Lichtman. "In essence, it seems that as we improve at some things, we lose our ability for other things."

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/lichtman.html

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>