Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming brain research with jellyfish genes and advances in microscopy

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

"This work represents a new approach to studying the biology of whole, living animals," says Jeff W. Lichtman, M.D., Ph.D., professor of anatomy and neurobiology. "I believe these methods will transform not only neurobiology, but also immunology and studies of organs such as the kidney, liver, and lung."

Lichtman presented the work at the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.



"The experiences we have in the world somehow shape our brains," says Lichtman. "How this information is encoded in our nervous systems is one of the deep, fundamental questions of neurobiology."

To help answer that question, Lichtman, together with Joshua R. Sanes, Ph.D., Alumni Endowed Professor of Neurobiology, and other colleagues at the School of Medicine, have developed strains of mice with nerve tracts stained by up to four different fluorescent jellyfish proteins, each of which glows with a different color when exposed to the correct energy of light. Using an advanced technology such as low-light-level digital imaging, confocal microscopy and two-photon microscopy, the investigators can observe over time nerve cells and the synapses that interconnect them within the brain.

Two-photon microscopy uses a powerful infrared laser that can selectively stimulate the fluorescent proteins within the nerve cells deep within the brain to glow. This approach permits imaging the brain without having to penetrate the skull. Computerized techniques then produce three-dimensional images of neural connections in the living animal, enabling the researchers to watch how patterns of connections between neurons change during learning and development.

The researchers’ studies are providing fascinating clues about how learning occurs in the brain. For example, it seems that nerve cells in the brain begin with many connections to other nerve cells. With time, many of these connections are eliminated shortly after birth.

"The brain begins with many diffuse and unspecialized sets of connections, and then sort of sculpts out subsets of those connections to serve particular functions," says Lichtman. "In essence, it seems that as we improve at some things, we lose our ability for other things."

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/lichtman.html

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>