Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming brain research with jellyfish genes and advances in microscopy

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

"This work represents a new approach to studying the biology of whole, living animals," says Jeff W. Lichtman, M.D., Ph.D., professor of anatomy and neurobiology. "I believe these methods will transform not only neurobiology, but also immunology and studies of organs such as the kidney, liver, and lung."

Lichtman presented the work at the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.



"The experiences we have in the world somehow shape our brains," says Lichtman. "How this information is encoded in our nervous systems is one of the deep, fundamental questions of neurobiology."

To help answer that question, Lichtman, together with Joshua R. Sanes, Ph.D., Alumni Endowed Professor of Neurobiology, and other colleagues at the School of Medicine, have developed strains of mice with nerve tracts stained by up to four different fluorescent jellyfish proteins, each of which glows with a different color when exposed to the correct energy of light. Using an advanced technology such as low-light-level digital imaging, confocal microscopy and two-photon microscopy, the investigators can observe over time nerve cells and the synapses that interconnect them within the brain.

Two-photon microscopy uses a powerful infrared laser that can selectively stimulate the fluorescent proteins within the nerve cells deep within the brain to glow. This approach permits imaging the brain without having to penetrate the skull. Computerized techniques then produce three-dimensional images of neural connections in the living animal, enabling the researchers to watch how patterns of connections between neurons change during learning and development.

The researchers’ studies are providing fascinating clues about how learning occurs in the brain. For example, it seems that nerve cells in the brain begin with many connections to other nerve cells. With time, many of these connections are eliminated shortly after birth.

"The brain begins with many diffuse and unspecialized sets of connections, and then sort of sculpts out subsets of those connections to serve particular functions," says Lichtman. "In essence, it seems that as we improve at some things, we lose our ability for other things."

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/lichtman.html

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>