Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transforming brain research with jellyfish genes and advances in microscopy

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are transplanting jellyfish genes into mice to watch how neural connections change in the brains of entire living animals. The development represents the merging of several technologies and enable researchers to watch changes inside living animals during normal development and during disease progression in a relatively non-invasive way.

"This work represents a new approach to studying the biology of whole, living animals," says Jeff W. Lichtman, M.D., Ph.D., professor of anatomy and neurobiology. "I believe these methods will transform not only neurobiology, but also immunology and studies of organs such as the kidney, liver, and lung."

Lichtman presented the work at the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.



"The experiences we have in the world somehow shape our brains," says Lichtman. "How this information is encoded in our nervous systems is one of the deep, fundamental questions of neurobiology."

To help answer that question, Lichtman, together with Joshua R. Sanes, Ph.D., Alumni Endowed Professor of Neurobiology, and other colleagues at the School of Medicine, have developed strains of mice with nerve tracts stained by up to four different fluorescent jellyfish proteins, each of which glows with a different color when exposed to the correct energy of light. Using an advanced technology such as low-light-level digital imaging, confocal microscopy and two-photon microscopy, the investigators can observe over time nerve cells and the synapses that interconnect them within the brain.

Two-photon microscopy uses a powerful infrared laser that can selectively stimulate the fluorescent proteins within the nerve cells deep within the brain to glow. This approach permits imaging the brain without having to penetrate the skull. Computerized techniques then produce three-dimensional images of neural connections in the living animal, enabling the researchers to watch how patterns of connections between neurons change during learning and development.

The researchers’ studies are providing fascinating clues about how learning occurs in the brain. For example, it seems that nerve cells in the brain begin with many connections to other nerve cells. With time, many of these connections are eliminated shortly after birth.

"The brain begins with many diffuse and unspecialized sets of connections, and then sort of sculpts out subsets of those connections to serve particular functions," says Lichtman. "In essence, it seems that as we improve at some things, we lose our ability for other things."

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/lichtman.html

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>