Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study helps explain gene silencing in the developing embryo

29.10.2002


New research at the University of North Carolina sheds light on the process that silences a group of genes in the developing embryo.



Down regulation of gene expression or "gene silencing" is considered crucial in normal development. In the embryo, proteins expressed by different sets of genes help signal the pattern of development, including limb formation. However, when that work is completed, the genes responsible must be turned off, explains Dr. Yi Zhang, assistant professor of biochemistry and biophysics at UNC-Chapel Hill School of Medicine and a member of the Lineberger Comprehensive Cancer Center.

"During the early embryonic development, a group of genes called Hox genes needs to be expressed. After they’ve been expressed and have set the body pattern, they have to be silenced permanently during the life of the organism," Zhang said.


According to Zhang, another gene group known as the Polycomb group has been intensely studied for its role in silencing Hox in organisms ranging from flies to mammals, including humans. "We know that if something is wrong with the Polycomb group, if these genes are mutated and cannot silence Hox, then development becomes abnormal."

Writing in the Nov 1 issue of Science, Zhang and co-authors from UNC; Southern Methodist University, Dallas, Texas; and Memorial Sloan Kettering Cancer Center, New York, NY, report the purification and characterization of a Polycomb group protein complex. Importantly, their research has established a link between Polycomb gene silencing and histone protein methylation, the addition of a methyl group to lysine, one of the amino acids that comprise the tail region of histone molecules.

Four core histone proteins are highly conserved in eukaryotic organisms, those having nucleated cells. These histones are involved in packaging our genetic information, DNA. Each contain a globular domain and an amino terminal "tail." Of interest to Zhang and others at UNC and elsewhere is that histones, specifically processes that modify them including methylation, are thought to play a major role in gene expression and cell division.

"Basically, we found that the Polycomb proteins function through methylating a particular lysine residue, lysine 27, on histone 3," Zhang said. When enzyme activity causing methylation of this site is blocked, Hox gene silencing does not occur.

Given those findings, Zhang and his study team could explain the permanence of Hox gene silencing. "Histone methylation cannot be reversed. It becomes permanent, a long-term genetic marker. Thus far, no ’histone demethylase’ has been discovered."

It may well be that methylation and other modifications of histone proteins are part of an emerging "histone code" of modifications that ultimately regulate gene expression. This code was postulated three years ago by Drs. David Allis and Brian Strahl at the University of Virginia. (Strahl is now at UNC.) Currently under investigation by Zhang and colleagues in several departments at UNC, a histone code would be in addition to the now familiar genetic code of repeating As, Cs, Gs, and Ts of DNA nucleotide sequences.

Through this histone code, differentially modified histone proteins could organize the genome into stretches of active and silent regions. Moreover, these regions would be inherited during cell division.

The study was supported by grants from the National Institute of General Medicine at NIH and the American Cancer Society.


note: contact Zhang at 919-843-8225 or yi_zhang@med.unc.edu
School of Medicine contact, Les Lang, 919-843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>