Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study helps explain gene silencing in the developing embryo

29.10.2002


New research at the University of North Carolina sheds light on the process that silences a group of genes in the developing embryo.



Down regulation of gene expression or "gene silencing" is considered crucial in normal development. In the embryo, proteins expressed by different sets of genes help signal the pattern of development, including limb formation. However, when that work is completed, the genes responsible must be turned off, explains Dr. Yi Zhang, assistant professor of biochemistry and biophysics at UNC-Chapel Hill School of Medicine and a member of the Lineberger Comprehensive Cancer Center.

"During the early embryonic development, a group of genes called Hox genes needs to be expressed. After they’ve been expressed and have set the body pattern, they have to be silenced permanently during the life of the organism," Zhang said.


According to Zhang, another gene group known as the Polycomb group has been intensely studied for its role in silencing Hox in organisms ranging from flies to mammals, including humans. "We know that if something is wrong with the Polycomb group, if these genes are mutated and cannot silence Hox, then development becomes abnormal."

Writing in the Nov 1 issue of Science, Zhang and co-authors from UNC; Southern Methodist University, Dallas, Texas; and Memorial Sloan Kettering Cancer Center, New York, NY, report the purification and characterization of a Polycomb group protein complex. Importantly, their research has established a link between Polycomb gene silencing and histone protein methylation, the addition of a methyl group to lysine, one of the amino acids that comprise the tail region of histone molecules.

Four core histone proteins are highly conserved in eukaryotic organisms, those having nucleated cells. These histones are involved in packaging our genetic information, DNA. Each contain a globular domain and an amino terminal "tail." Of interest to Zhang and others at UNC and elsewhere is that histones, specifically processes that modify them including methylation, are thought to play a major role in gene expression and cell division.

"Basically, we found that the Polycomb proteins function through methylating a particular lysine residue, lysine 27, on histone 3," Zhang said. When enzyme activity causing methylation of this site is blocked, Hox gene silencing does not occur.

Given those findings, Zhang and his study team could explain the permanence of Hox gene silencing. "Histone methylation cannot be reversed. It becomes permanent, a long-term genetic marker. Thus far, no ’histone demethylase’ has been discovered."

It may well be that methylation and other modifications of histone proteins are part of an emerging "histone code" of modifications that ultimately regulate gene expression. This code was postulated three years ago by Drs. David Allis and Brian Strahl at the University of Virginia. (Strahl is now at UNC.) Currently under investigation by Zhang and colleagues in several departments at UNC, a histone code would be in addition to the now familiar genetic code of repeating As, Cs, Gs, and Ts of DNA nucleotide sequences.

Through this histone code, differentially modified histone proteins could organize the genome into stretches of active and silent regions. Moreover, these regions would be inherited during cell division.

The study was supported by grants from the National Institute of General Medicine at NIH and the American Cancer Society.


note: contact Zhang at 919-843-8225 or yi_zhang@med.unc.edu
School of Medicine contact, Les Lang, 919-843-9687 or llang@med.unc.edu

Leslie Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>